Dear Fernando and all:

Thanks for your help. Now works. This is a training example to learn how to estimate a Box-Cox (right and/or left side transformations) with R (as LIMDEP does) in order to compare these estimations with the ones derived by applying NLS, ones the dependent variable has been divided by its geometric mean (see below) as suggested by (Zarembka (1974) and Spitzer (1984). However the example of the demand of money seems not to work. Any idea to face the error messages or how to estimate a Box-Cox function with R?

        Best regards,
        Ikerne

library(nlrwr)
r<-c(4.50,4.19,5.16,5.87,5.95,4.88,4.50,6.44,7.83,6.25,5.50,5.46,7.46,10.28,11.77,13.42,11.02,8.50,8.80,7.69)
Lr<-log(r)
M<-c(480.00,524.30,566.30,589.50,628.20,712.80,805.20,861.00,908.40,1023.10,1163.60,1286.60,1388.90,1497.90,1631.40,1794.40,1954.90,2188.80,2371.70,2563.60)
LM<-log(M)
Y<-c(2208.30,2271.40,2365.60,2423.30,2416.20,2484.80,2608.50,2744.10,2729.30,2695.00,2826.70,2958.60,3115.20,3192.40,3187.10,3248.80,3166.00,3277.70,3492.00,3573.50)
LY<-log(Y)
gmM<-exp((1/20)*sum(LM))
GM<-M/gmM
Gr<-r/gmM
GY<-Y/gmM
money<-data.frame(r,M,Y,Lr,LM,LY,GM,Gr,GY)
attach(money)
ols1<-lm(GM~r+Y)
output1<-summary(ols1)
coef1<-ols1$coefficients
a1<-coef1[[1]]
b11<-coef1[[2]]
b21<-coef1[[3]]
ols2<-lm(GM~Gr+GY)
output2<-summary(ols2)
coef2<-ols2$coefficients
a2<-coef2[[1]]
b12<-coef2[[2]]
b22<-coef2[[3]]
money.m1<-nls(GM~a+b*r^g+c*Y^g,data=money,start=list(a=a1,b=b11,g=1,c=b21))
money.m2<-nls(GM~a+b*Gr^g+c*GY^g,data=money,start=list(a=a2,b=b12,g=1,c=b22))


                Ikerne del Valle Erkiaga
                Department of Applied Economics V
                Faculty of Economic and Business Sciences
                University of the Basque Country
                Avda. Lehendakari Agirre, NÂș 83
                48015 Bilbao (Bizkaia) Spain

______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to