Hello,

I use the following function "bootstrapge" to calculate (and compare) the 
generalization error of several bootstrap implementations:

##
## Calculates and returns a coefficient corresponding to the generalization 
## error. The formula for the bootstrap generalization error is:
## $N^{-1}\sum_{i=1}^n B^{-1}\sum_{j=1}^B |y_i - (\beta_n^{*j})^T x|$
## 
## x - mxn matrix where m is the number of model parameters and n is the 
##     number of observations
## y - n column-vector containing true values
## theta_star - mxn matrix where m is the number of bootstrapped samples 
##              and n is the number of model parameters 
##
bootstrapge <- function(x,y,theta_star) {
        B <- nrow(theta_star)
        P <- ncol(theta_star)

        t <- 0
        for (b in 1:B) {
                t <- t + abs(y - rbind(theta_star[b,])%*%x)
        }
        return(mean(t/B))
}  

Is there a nicer/faster way to accomplish the same using implicit loop 
functions e.g. apply, sapply etc I could not figure it out ...

Is there a way to get a similar coefficient using the boot library? I could not 
find any way to get such a "generalization error" so I can compare my 
implementation with that one ...

TIA,
Best regards,
Giovanni
        [[alternative HTML version deleted]]

______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to