> y.arma <- arima.sim(list(ar=0.8),n=200) > y.arma.arima <- arima(y.arma,order=c(1,0,0),include.mean=FALSE) > y.arma.arima
Call: arima(x = y.arma, order = c(1, 0, 0), include.mean = FALSE)
Coefficients:
ar1
0.7594
s.e. 0.0455sigma^2 estimated as 1.059: log likelihood = -290, aic = 583.99
> plot(y.arma[-1],lines="l") > lines(filter(y.arma,y.arma.arima$coef,method="con")[-200],lty=2)
So using the "convolution" method appears to produce the correct forecast for the y.arma series.
But suppose I had generated and fitted an ARMA(1,1) or ARIMA(1,1,1) model? How would I use "filter" in this case?
Rick B.
______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help
