hope this helps. spencer graves
Rafael Bertola wrote:
Hi,
I've used the Mathematica to produce 3D graphics, contour plots of a bivariate normal distribution
Now I want make these graphics in R, but i do not know how. I would like to: - Plot a 3D graph for some different variance matrix - Plot the contour plots - Find and try to plot (in the 3d graph ou contour plot) the (1-a)% confidence region based in a chi-square(a) with the degrees of freedom equal a 2 or bigger.
Below is the Mathematica Notebook that i've used until now
<< "Graphics`PlotField`"
NB[x_,y_]:=(1/((2 Pi)*Sqrt[a*b*(1-c^2)]))*Exp[(-1/(2*(1-c^2)))*( ((x-u)/Sqrt[a])^2 + ((y-v)/Sqrt[b])^2 - 2*c(((x-u)/Sqrt[a])((y-v)/Sqrt[b]))
)]
{{a,c}, {c,b}} = {{1,0}, {0,1}}; The covariance Matrix
{u,v} = {0,0}; Mean vector
Plot3D[NB[x,y],{x,-1.5,1.5},{y,-1.5,1.5},
AxesLabel->{x,y,z},
BoxRatios->{1,1,1}];
ContourPlot[NB[x,y],{x,-1,1},{y,-1,1},
Axes->True, AxesLabel->{x,y}];
3d graph rotation Do[ Plot3D[NB[x,y],{x,-1.5,1.5},{y,-1.5,1.5}, PlotPoints->20, Mesh ->False, SphericalRegion ->True, Axes ->None, Boxed ->False, ViewPoint->{2 Cos[t], 2 Sin[t], 1.3}, BoxRatios->{1,1,1} ],{t, 0, 2Pi-2Pi/36, 2Pi/36}]
Thanks, Rafael
______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help
