Dear R users: I have some difficulties analizing data with mixed effects NLME and the last version of R. More concretely, I have a repeated measures design with a single group and 2 experimental factors (say A and B) and my interest is to compare additive and nonadditive models.
suj rv A B 1 s1 4 a1 b1 2 s1 5 a1 b2 3 s1 7 a1 b3 4 s1 1 a2 b1 5 s1 4 a2 b2 6 s1 2 a2 b3 7 s2 6 a1 b1 8 s2 8 a1 b2 9 s2 10 a1 b3 10 s2 3 a2 b1 11 s2 6 a2 b2 12 s2 6 a2 b3 13 s3 1 a1 b1 14 s3 6 a1 b2 15 s3 5 a1 b3 16 s3 3 a2 b1 17 s3 5 a2 b2 18 s3 4 a2 b3 19 s4 2 a1 b1 20 s4 10 a1 b2 21 s4 12 a1 b3 22 s4 1 a2 b1 23 s4 4 a2 b2 24 s4 7 a2 b3 25 s5 5 a1 b1 26 s5 10 a1 b2 27 s5 10 a1 b3 28 s5 5 a2 b1 29 s5 6 a2 b2 30 s5 5 a2 b3 31 s6 1 a1 b1 32 s6 7 a1 b2 33 s6 8 a1 b3 34 s6 2 a2 b1 35 s6 8 a2 b2 36 s6 7 a2 b3 It is very easy to fit these data with base R function AOV: NonAdditive model: aov(rv ~ A*B + Error(suj+suj/A+suj/B) Additive model: aov(rv ~ A*B + Error(suj) and also easy with SAS MIXED (I missed some obvious lines): NonAdditive model model vr = A B A*B; random suj A*suj B*suj; repeated / type=cs subj=suj; Additive model; model vr = A B A*B /ddfm=satterth; repeated / type=cs subj=suj; Using LME I do not find any problems to fit the additive model with lme(vr~A*B, random=~1|suj, cor=corCompSymm()) but I have found some difficulties fitting the nonadditive model. Can anyone help me? Thanks in advance. Manuel Ato Dpto. Psic.Básica y Metodología Apartado 4021 30080 MURCIA (Spain) e-mail: [EMAIL PROTECTED] ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help