Have you considered "nls" or "optim"?

My way of handling this kind of problem is to assume that x and / or y follow some probability distribution with parameters a and b. Then I write a function to compute deviance = (-2*log(likelihood)) = (-2*log(probability density for x and / or y given a and b)) and feed it to "optim" to minimize this "deviance". Or if the response variable is a nonlinear model plus independent normal errors with constant variance, I may use "nls".

hope this helps. spencer graves

Sophie Gerber wrote:

Dear Colleagues,

I have x, y data (pollen and seed dispersal from oaks !) that I would like to fit with a function which look like this:

p(a,b,x,y)=b/(2*pi*a�gamma(2/b))*exp(-(square_root(x�+y�)/a)power(b))

I am looking for a and b values that fit my data at best.
Can someone give me hints to perform such an analysis with R ?

Thanks a lot

Sophie


Sophie Gerber [EMAIL PROTECTED] INRA - UMR BIOGECO 69 route d'Arcachon tel (33) (0)5 57 12 28 30 33612 Cestas cedex fax (33) (0)5 57 12 28 81 http://www.pierroton.inra.fr/genetics/Perso/Sophie/ page_sophie_english.html

______________________________________________
[EMAIL PROTECTED] mailing list
https://www.stat.math.ethz.ch/mailman/listinfo/r-help

______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help

Reply via email to