Sreedevi Gopalan wrote:
we have implemented teh following code for determinging the clustering
model of a dataset.
bicvals <- EMclust( hdata, 7)
sumry1 <- summary(bicvals, hdata,7) # summary object for emclust()
print(sumry1)


This set of code gives the following output
classification table:
1 2 3 4 5 6 7 1 1 1 4 1 1 1 which I think means there is 1 gene in the 1st cluster...1 gene in the
2nd cluster , 4 genes in the 4th cluster and so on....But I need to know
which gene is in which cluster.
Is there any way to find that out....

Here's an example:


R> data(iris)
R> irisMatrix <- as.matrix(iris[,1:4])
R> irisBic <- EMclust(irisMatrix)
R> irisBest <- summary(irisBic, irisMatrix)
R> names(irisBest)
 [1] "bic"            "options"
 [3] "classification" "uncertainty"
 [5] "n"              "d"
 [7] "G"              "z"
 [9] "mu"             "sigma"
[11] "decomp"         "pro"
[13] "loglik"         "Vinv"
[15] "modelName"
R> irisBest$classification
  [1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [23] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 [45] 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 [67] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
 [89] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[111] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
[133] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
R>

Hope this helps,

Sundar

______________________________________________
[EMAIL PROTECTED] mailing list
https://www.stat.math.ethz.ch/mailman/listinfo/r-help

Reply via email to