It's reasonably straightforward to use nls() for this:

> d <- data.frame(x=c(37,42,47,52,57,62,67,72,77,82),y=c(2.8150,3.5239,4.0980,4.5845,5.0709,5.4824,5.8427,6.3214,6.7349,7.3651))
> fit <- nls(y~R*exp(x*A),start=list(R=2,A=0.1),data=d)
> plot(x,y)
> lines(x, coef(fit)[1]*exp(x*coef(fit)[2]))
>


You might want to check that your objective does not have local optima (in which case the assumption that minimizing the sum-squared residual will minimize your objective may be false).

hope this helps,

Tony Plate

At Friday 04:35 PM 1/9/2004 -0200, Bernardo Rangel Tura wrote:
Hi R masters,

Sorry for first mensage, this is orignal text...

y<-c(2.8150,3.5239,4.0980,4.5845,5.0709,5.4824,5.8427,6.3214,6.7349,7.3651)
x<-c(37,42,47,52,57,62,67,72,77,82)

I need fit R and A in y=f(x)=R*exp(A*x), with minimize sd= sqrt(SRR/(n-2)) where SRR is Sum of the Square of the Residuals
and n is number of data points (in this case 10)


How do I make this?


Thanks in advance


Bernardo Rangel Tura, MD, MSc
National Institute of Cardiology Laranjeiras
Rio de Janeiro Brazil
______________________________________________
[EMAIL PROTECTED] mailing list
https://www.stat.math.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Tony Plate [EMAIL PROTECTED]


______________________________________________
[EMAIL PROTECTED] mailing list
https://www.stat.math.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to