On Tue, 4 May 2004, Liaw, Andy wrote: > 1. If your code actually runs, you should upgrade R, and quit using `_' for > assignment... 8-) > > 2. You seem to have an extraneous `]' after the na.exclude. Could that be > the problem?
More seriously, the for() loop over k will mess up the value of k that you want to use for lm. -thomas > > Andy > > > > From: Christoph Scherber > > > > actually, the situation is much more complicated. I am producing > > multiple graphs within a "for" loop. For some strange reason, the > > plotting routine always stops once lm(y~x) encounters more than one > > missing value (I have marked the important bit with "***********"): > > > > par(mfrow=c(5,5)) > > p_seq(3,122,2) > > i_0 > > k_0 > > number_0 > > for (i in p) { > > j_foranalysis[93:174,i+1] > > k_foranalysis[93:174,i] > > df_data.frame(j,k) > > mainlab1_substring(names(foranalysis[i]),2,8) > > mainlab2_"; corr.:" > > mainlab3_round(cor(j,k,na.method="available"),4) > > mainlab4_"; excl.Mono:" > > mainlab5_round(cor(j[j<0.9],k[j<0.9],na.method="available"),4) > > mainlab_paste(mainlab1,mainlab2,mainlab3,mainlab4,mainlab5) > > plot(k,j,main=mainlab,xlab="% of total biomass",ylab="% of total > > cover",pch="n") > > for (k in 1:length(foranalysis[93:174,i])) > > number[k]_substring(plotcode[foranalysis[k,1]],1,5) > > text(foranalysis[93:174,i],foranalysis[93:174,i+1],number) > > ********************************** > > model_lm(j~k,na.action=na.exclude]) > > ********************************** > > abline(model) > > abline(0,1,lty=2) > > } > > > > Does anyone have any suggestions on this? > > > > Best regards > > Chris., > > > > > > > > > > Liaw, Andy wrote: > > > > >By (`factory') default that's done for you automagically, because > > >options("na.action") is `na.omit'. > > > > > >If you really want to do it `by hand', and have the data in > > a data frame, > > >you can use something like: > > > > > >lm(y ~ x, df[complete.cases(df),]) > > > > > >HTH, > > >Andy > > > > > > > > > > > >>From: Christoph Scherber > > >> > > >>Dear all, > > >> > > >>I have a data frame with different numbers of NA´s in each > > >>column, e.g.: > > >> > > >>x y > > >>1 2 > > >>NA 3 > > >>NA 4 > > >>4 NA > > >>1 5 > > >>NA NA > > >> > > >> > > >>I now want to do a linear regression on y~x with all the NA´s > > >>removed. > > >>The problem now is that is.na(x) (and is.na(y) obviously > > >>gives vectors > > >>with different lengths. How could I solve this problem? > > >> > > >>Thank you very much for any help. > > >> > > >>Best regards > > >>Chris > > >> > > > > ______________________________________________ > [EMAIL PROTECTED] mailing list > https://www.stat.math.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html > Thomas Lumley Assoc. Professor, Biostatistics [EMAIL PROTECTED] University of Washington, Seattle ______________________________________________ [EMAIL PROTECTED] mailing list https://www.stat.math.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html