If the input variables to your network are continuous you can visualize the relationship
between two input variables and the resulting output (class probability)
with image() or persp().


Here is an example (you need the mlbench package from CRAN to run this):

library(mlbench)
x <- as.data.frame(mlbench.spirals(400,cycles=1.5,sd=.1))
plot(x$x.1,x$x.2,col=unclass(x$classes))

nn1 <- nnet(classes ~ x.1 + x.2, data = x, size=20)
xval <- seq(-1.5,1.5,length=100)
map <- outer(xval,xval,FUN=function(x,y) {predict(nn1,data.frame(x.1=x,x.2=y))})
image(map)
par("usr"=c(-1.5,1.5,-1.5,1.5))
points(x$x.1,x$x.2,pch=as.numeric(x$classes)+15,col=as.numeric(x$classes)+4)


### or use:

persp(z=map,expand=.3,shade=.7,col="orange",phi=45,theta=180)


If you have more than 2 input variables you can keep the other ones at fixed levels and see what happens.


hth,

Martin Keller-Ressel

______________________________________________
[EMAIL PROTECTED] mailing list
https://www.stat.math.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to