On 22 ××× 2004, at 06:09, [EMAIL PROTECTED] wrote:

Message: 5
Date: Wed, 21 Jul 2004 13:48:53 +0200
From: [EMAIL PROTECTED] ( Bj?rn-Helge Mevik )
Subject: Re: [R] Precision in R
To: [EMAIL PROTECTED]
Message-ID: <[EMAIL PROTECTED]>
Content-Type: text/plain; charset=iso-8859-1

Since you didn't say anything about _what_ you did, either in SAS or
R, my first thought was:  Have you checked that you use the same
parametrization of the models in R and SAS?

Well, I'm running Poisson regressions for the incidence of childhood acute lymphoblastic leukemia in a set of US counties (and in this data set, for some reason, Hawaii counts as an entire county). Separate models are calculated for males and females. Independent variable of interest are race ("white", "black", "other") and (in the model for males only) -log(proportion of people in county who moved between 1985 and 1990) (AKA "minus log proportion moved" or "MLPM").


SAS code:
title "Males";
proc genmod data=males order=formatted;
class race sex;
model observed = race mlpm*mlpm*mlpm mlpm*mlpm mlpm / dist=poisson link=log offset=lPYAR covb;


run;

title "Females";
proc genmod data=females order=formatted;
        class race sex;
        model observed = race / dist=poisson link=log offset=lPYAR;
run;

R code:
Female.model <- glm(Observed ~ Black + Other, family = poisson(link=log), offset=log(PYAR), data=Females)

Male.model <- glm(Observed ~ Black + Other + I(Minus.log.proportion.moved^3) + I(Minus.log.proportion.moved^2) + Minus.log.proportion.moved, family = poisson(link=log), offset=log(PYAR), data=Males)

The difference in how race is included in the models is due to me wanting both programs to use "whites" as the referent group (seeing as I have more data from them than "blacks" and "others").


SAS results:
Males 12:08 Wednesday, April 21, 2004 173

                                      The GENMOD Procedure

                                       Model Information

                                Data Set              WORK.MALES
                                Distribution             Poisson
                                Link Function                Log
                                Dependent Variable      Observed
                                Offset Variable            lPYAR
                                Observations Used            526


Class Level Information

                                   Class      Levels    Values

                                   Race            3    B O W
                                   Sex             1    M


Parameter Information

                             Parameter       Effect            Race

                             Prm1            Intercept
                             Prm2            Race              B
                             Prm3            Race              O
                             Prm4            Race              W
                             Prm5            mlPM*mlPM*mlPM
                             Prm6            mlPM*mlPM
                             Prm7            mlPM


Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 520 239.5025 0.4606
Scaled Deviance 520 239.5025 0.4606
Pearson Chi-Square 520 360.5677 0.6934
Scaled Pearson X2 520 360.5677 0.6934
Log Likelihood 320.5910



Males 12:08 Wednesday, April 21, 2004 174


                                      The GENMOD Procedure

           Algorithm converged.


Estimated Covariance Matrix

Prm1 Prm2 Prm3 Prm5 Prm6 Prm7

Prm1 9.25071 -0.01841 0.04877 -13.71192 37.88798 -33.20414
Prm2 -0.01841 0.03392 0.002521 0.03045 -0.07720 0.06191
Prm3 0.04877 0.002521 0.02027 -0.07622 0.21457 -0.18748
Prm5 -13.71192 0.03045 -0.07622 22.11044 -59.26190 50.49281
Prm6 37.88798 -0.07720 0.21457 -59.26190 160.70 -138.32
Prm7 -33.20414 0.06191 -0.18748 50.49281 -138.32 120.18



Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq


Intercept 1 -15.8294 3.0415 -21.7907 -9.8682 27.09 <.0001
Race B 1 -0.6646 0.1842 -1.0256 -0.3036 13.02 0.0003
Race O 1 -0.1058 0.1424 -0.3848 0.1733 0.55 0.4575
Race W 0 0.0000 0.0000 0.0000 0.0000 . .
mlPM*mlPM*mlPM 1 15.4205 4.7022 6.2044 24.6366 10.75 0.0010
mlPM*mlPM 1 -36.8423 12.6768 -61.6884 -11.9961 8.45 0.0037
mlPM 1 27.2989 10.9627 5.8124 48.7855 6.20 0.0128
Scale 0 1.0000 0.0000 1.0000 1.0000


NOTE: The scale parameter was held fixed.


Females 12:08 Wednesday, April 21, 2004 175


                                      The GENMOD Procedure

                                       Model Information

                               Data Set              WORK.FEMALES
                               Distribution               Poisson
                               Link Function                  Log
                               Dependent Variable        Observed
                               Offset Variable              lPYAR
                               Observations Used              534


Class Level Information

                                   Class      Levels    Values

                                   Race            3    B O W
                                   Sex             1    F


Criteria For Assessing Goodness Of Fit

Criterion DF Value Value/DF

Deviance 531 245.2305 0.4618
Scaled Deviance 531 245.2305 0.4618
Pearson Chi-Square 531 484.8219 0.9130
Scaled Pearson X2 531 484.8219 0.9130
Log Likelihood 183.8640



Algorithm converged.


Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq


Intercept 1 -9.7630 0.0577 -9.8762 -9.6499 28595.0 <.0001
Race B 1 -1.0917 0.2493 -1.5803 -0.6030 19.17 <.0001
Race O 1 0.0014 0.1569 -0.3061 0.3088 0.00 0.9931
Race W 0 0.0000 0.0000 0.0000 0.0000 . .



Females 12:08 Wednesday, April 21, 2004 176


                                      The GENMOD Procedure

                                 Analysis Of Parameter Estimates

Standard Wald 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSq


  Scale              0      1.0000      0.0000      1.0000      1.0000

NOTE: The scale parameter was held fixed.

R results:
> summary(Female.model)

Call:
glm(formula = Observed ~ Black + Other, family = poisson(link = log),
    data = Females, offset = log(PYAR))

Deviance Residuals:
    Min       1Q   Median       3Q      Max
-2.4060  -0.5315  -0.1109  -0.0284   2.6520

Coefficients:
             Estimate Std. Error  z value Pr(>|z|)
(Intercept) -9.763025   0.057735 -169.101  < 2e-16 ***
BlackTRUE   -1.091679   0.249309   -4.379 1.19e-05 ***
OtherTRUE    0.001363   0.156876    0.009    0.993
---
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 272.49  on 533  degrees of freedom
Residual deviance: 245.23  on 531  degrees of freedom
AIC: 520.71

Number of Fisher Scoring iterations: 7

> summary(Male.model)

Call:
glm(formula = Observed ~ Black + Other + I(Minus.log.proportion.moved^3) +
I(Minus.log.proportion.moved^2) + Minus.log.proportion.moved,
family = poisson(link = log), data = Males, offset = log(PYAR))


Deviance Residuals:
     Min        1Q    Median        3Q       Max
-2.24568  -0.49137  -0.10197  -0.03262   3.88346

Coefficients:
Estimate Std. Error z value Pr(>|z|)
(Intercept) -16.39065 3.31644 -4.942 7.72e-07 ***
BlackTRUE -0.66461 0.18418 -3.608 0.000308 ***
OtherTRUE -0.09513 0.14278 -0.666 0.505245
I(Minus.log.proportion.moved^3) 24.39920 7.51188 3.248 0.001162 **
I(Minus.log.proportion.moved^2) -51.17011 17.75857 -2.881 0.003959 **
Minus.log.proportion.moved 33.48773 13.52491 2.476 0.013286 *
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1


(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 278.68  on 525  degrees of freedom
Residual deviance: 240.54  on 520  degrees of freedom
AIC: 582.68

Number of Fisher Scoring iterations: 6

Now, you'll notice (after scrolling up and down a lot) that the models for females have identical results, but the models for males have different results. Anybody have any ideas why I'm getting a difference and which program (if either) is giving me the right answer? Thanks in advance again.


Aaron

-------------
Aaron Solomonâ (âben Saul Josephâ) âAdelman
E-mailâ:  [EMAIL PROTECTED]
Web siteâ:  âhttpâ://âpeople.musc.eduâ/â~adelmaasâ/â
AOL Instant Messengerâ & âYahooâ! âMessenger:  âHiergargo
AIM chat-room (preferred):  Adelmania

______________________________________________
[EMAIL PROTECTED] mailing list
https://www.stat.math.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to