With models estimated with lm, the number of parameters is obtained adding 1 to the rank of the fitted model (to account for the residuals variance). The number of parameters is found in logLik objects:

> # example from ?lm
> ctl <- c(4.17,5.58,5.18,6.11,4.50,4.61,5.17,4.53,5.33,5.14)
> trt <- c(4.81,4.17,4.41,3.59,5.87,3.83,6.03,4.89,4.32,4.69)
> group <- gl(2,10,20, labels=c("Ctl","Trt"))
> weight <- c(ctl, trt)
> lm.D9 <- lm(weight ~ group)
>
> # rank of the model
> lm.D9$rank
[1] 2
>
> # loglik
> logLik(lm.D9)
`log Lik.' -20.08824 (df=3)
>
> # number of parameters in the model
> attr(logLik(lm.D9), "df")
[1] 3
>
> # AIC
> AIC(lm.D9)
[1] 46.17648
>
> c(- 2 * logLik(lm.D9) + 2 * attr(logLik(lm.D9), "df"))
[1] 46.17648
>
> # AICc = AIC + 2 * k * (k + 1)/(n - k - 1)
>
> AICc_lm <- function(x){
+   n <- length(resid(x))
+   k <- attr(logLik(lm.D9), "df")
+   AIC(x) + 2 * k * (k + 1) / (n - k - 1)
+   }
>
> AICc_lm(lm.D9)
[1] 47.67648

Best regards,

Renaud


John Fox a écrit :

Dear Thomas,

To get the number of independent parameters in the lm object mod, you can
use mod$rank, sum(!is.na(coef(mod)), or -- if there are no linear
dependencies among the columns of the model matrix -- length(coef(mod)).

I hope this helps,
 John

--------------------------------
John Fox
Department of Sociology
McMaster University
Hamilton, Ontario
Canada L8S 4M4
905-525-9140x23604
http://socserv.mcmaster.ca/jfox --------------------------------



-----Original Message-----
From: [EMAIL PROTECTED] [mailto:[EMAIL PROTECTED] On Behalf Of Thomas W Volscho
Sent: Sunday, October 31, 2004 12:41 PM
To: [EMAIL PROTECTED]
Subject: [R] Obtaining fitted model information


Dear list,
I am brand new to R and using Dalgaard's (2002) book Introductory Statistics with R (thus, some of my terminology may be incorrect).


I am fitting regression models and I want to use Hurvich and Tsai's AICC statistic to examine my regression models. This penalty can be expressed as: 2*npar * (n/(n-npar-1)).

While you can obtain AIC, BIC, and logLik, I want to impose the AICC penalty instead.

After fitting a model. Is there a way of obtaining the "npar" and then assigning it to a variable?

Essentially, I want to then write a simple function to add the AICC penalty to (-2*logLik).

Thank you in advance for any help,
Tom Volscho

************************************ Thomas W. Volscho
Graduate Student
Dept. of Sociology U-2068
University of Connecticut
Storrs, CT 06269
Phone: (860) 486-3882
http://vm.uconn.edu/~twv00001


______________________________________________
[EMAIL PROTECTED] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html


______________________________________________
[EMAIL PROTECTED] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html



--
Dr Renaud Lancelot, vétérinaire
C/0 Ambassade de France - SCAC
BP 834 Antananarivo 101 - Madagascar

e-mail: [EMAIL PROTECTED]
tel.:   +261 32 40 165 53 (cell)
        +261 20 22 665 36 ext. 225 (work)
        +261 20 22 494 37 (home)

______________________________________________
[EMAIL PROTECTED] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to