Hi Sven,

just use:

lm(y~(x1+x2+x3+...+x10)^10)

e.g.,

y <- rnorm(5000)
x1 <- factor(sample(0:1, 5000, TRUE))
x2 <- factor(sample(0:1, 5000, TRUE))
x3 <- factor(sample(0:1, 5000, TRUE))
x4 <- factor(sample(0:1, 5000, TRUE))

lm1 <- lm(y~(x1+x2+x3+x4)^4)
summary(lm1)


I hope it helps.

Best,
Dimitris

----
Dimitris Rizopoulos
Ph.D. Student
Biostatistical Centre
School of Public Health
Catholic University of Leuven

Address: Kapucijnenvoer 35, Leuven, Belgium
Tel: +32/16/336899
Fax: +32/16/337015
Web: http://www.med.kuleuven.ac.be/biostat
    http://www.student.kuleuven.ac.be/~m0390867/dimitris.htm


----- Original Message ----- From: "Sven" <[EMAIL PROTECTED]>
To: <[EMAIL PROTECTED]>
Sent: Tuesday, November 30, 2004 12:59 PM
Subject: [R] 2k-factorial design with 10 parameters



Hi,

I'd like to apply a 2^k factorial design with k=10 parameters. Obviously this results in a quite long term for the model equation due to the high number of combinations of parameters.

How can I specify the equation for the linear model (lm) without writing all combinations explicitly down by hand? Does a R command exist for this problematic?

Thanks for your help in advance,
Sven

______________________________________________
[EMAIL PROTECTED] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html



______________________________________________ [EMAIL PROTECTED] mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to