"Jim Brennan" <[EMAIL PROTECTED]> writes:

> Yes you are right I guess this works only for normal data. Free advice
> sometimes comes with too little consideration :-)

Worth every cent...

> Sorry about that and thanks to Spencer for the correct way.

Hmm, but is it? Or rather, what is the relation between the
correlation of the normals  and that of the transformed variables? 
Looks nontrivial to me.

Incidentally, here's a way that satisfies the criteria, but in a
rather weird way:

N <- 10000
rho <- .6
x <- runif(N, -.5,.5)
y <- x * sample(c(1,-1), N, replace=T, prob=c((1+rho)/2,(1-rho)/2))

-- 
   O__  ---- Peter Dalgaard             Ă˜ster Farimagsgade 5, Entr.B
  c/ /'_ --- Dept. of Biostatistics     PO Box 2099, 1014 Cph. K
 (*) \(*) -- University of Copenhagen   Denmark          Ph: (+45) 35327918
~~~~~~~~~~ - ([EMAIL PROTECTED])                  FAX: (+45) 35327907

______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to