Hi all,

I am wondering in R, suppose I did the principal component analysis on
training data set and obtain the rotation matrix, via:

> pca=prcomp(training_data, center=TRUE, scale=FALSE, retx=TRUE);

Then I want to rotate the test data set using the

> d1=scale(test_data, center=TRUE, scale=FALSE) %*% pca$rotation;
> d2=predict(pca, test_data, center=TRUE, scale=FALSE);

these two values are different

> min(d2-d1)
[1] -1.976152
> max(d2-d1)
[1] 1.535222

However, if I do these on the training data:

> d1=scale(training_data, center=TRUE, scale=FALSE) %*% pca$rotation;
> d2=predict(pca, training_data, center=TRUE, scale=FALSE);
> d3=pca$x;

Then the d1, d2, d3 are all the same...

------------------------------------

So now I am confused... why does the test data have two different rotated
matrix value?

Thanks a lot!

        [[alternative HTML version deleted]]

______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html

Reply via email to