Try runmean2 <- function(x, k) # k must be even (coredata(runmean(x, k-1)) * (k-1) + coredata(lag(x, -k/2, na.pad = TRUE)))/k
Also, in your code use matrices or vectors instead of data frames to avoid any overhead in using data frames. On 5/2/06, Guojun Zhu <[EMAIL PROTECTED]> wrote: > Sorry to bother you guys again. This is great. But > this is for 61 number and the second case will change > 60 to 61. "run*" only accept odd number window. How > to get around it with 60? Any suggestion? Thanks. > > --- Gabor Grothendieck <[EMAIL PROTECTED]> > wrote: > > > Using runmean from caTools the first one below does > > it in under 1 second but will not handle NAs. The > > second one takes under 15 seconds and handles > > them by replacing them with linear approximations. > > Note that k must be odd. > > > > # 1 > > > > library(caTools) > > set.seed(1) > > system.time({ > > y <- rnorm(140001) > > x <- as.numeric(seq(y)) > > k <- 61 > > Mxy <- runmean(x * y, k) > > Mxx <- runmean(x * x, k) > > Mx <- runmean(x, k) > > My <- runmean(y, k) > > b <- (Mxy - Mx * My) / (Mxx - Mx * Mx) > > a <- My - b * Mx > > }) > > > > # 2 > > > > library(caTools) > > library(zoo) > > set.seed(1) > > system.time({ > > y <- rnorm(140000) > > x <- as.numeric(seq(y)) > > x[100:200] <- NA > > x <- na.approx(zoo(x)) > > y <- zoo(y) > > k <- 60 > > Mxy <- runmean(x * y, k) > > Mxx <- runmean(x * x, k) > > Mx <- runmean(x, k) > > My <- runmean(y, k) > > b <- (Mxy - Mx * My) / (Mxx - Mx * Mx) > > a <- My - b * Mx > > }) > > > > > > On 5/1/06, Guojun Zhu <[EMAIL PROTECTED]> wrote: > > > I basically has a long data.frame a. but I only > > need > > > three columns x,y. Let us say the index of row is > > t. > > > I need to produce new column s_t as the linear > > > regression coefficient of (x_(t-60),...x_(t-1)) on > > > (y_(t-60),...,y_(t-1)). The data is about 140,000 > > > rows. I wrote a simple code on this which is > > super > > > slow, it takes more than 2 hours on a 2.8Ghz Intel > > Duo > > > Core. My friend use SAS and his code needs only > > > couple of minutes. I know there must be some more > > > efficient way to write it. Can anyone help me on > > > this? Here is the code. > > > > > > Also one line produce a complete NA temp$y and lm > > > function failed on that. How to make it just > > produce > > > a NA instead and keep runing? > > > > > > attach(return) > > > betat=rep(NA,length(RET)) > > > for (i in 61:length(RET)){cat(i," "); > > > if (year[[i]]>=1995){ > > > > > > > > > temp<-data.frame(y=RET[(i-60):(i-1)]-riskfree[(i-60):(i-1)],x=sprtrn[(i-60):(i-1)]-riskfree[(i-60):(i-1)]) > > > > > > > > > betat[[i]]<-lm(y~x+1,na.action=na.exclude,temp)[[1]][[2]] > > > #if (i%%100==0) > > > cat(i," "); > > > > > > > > > > > > return$vol.cap[[i]]=mean(VOL[(i-12):(i-1)],na.rm=TRUE)/return$cap[[i]] > > > } > > > } > > > > > > ______________________________________________ > > > R-help@stat.math.ethz.ch mailing list > > > https://stat.ethz.ch/mailman/listinfo/r-help > > > PLEASE do read the posting guide! > > http://www.R-project.org/posting-guide.html > > > > > > > > __________________________________________________ > Do You Yahoo!? > Tired of spam? Yahoo! Mail has the best spam protection around > http://mail.yahoo.com > ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html