It appears that the "adjustSigma" argument of 'summary.lme' does nothing with the default method, "REML". To check, I tried the following modification of the 'summary.lme' example:
fm1 <- lme(distance ~ age, Orthodont, random = ~ age | Subject) fm1sa <- summary(fm1) fm1s <- summary(fm1, adjustSigma=FALSE) fm1saa <- summary(fm1, adjustSigma=TRUE) all.equal(fm1s, fm1sa) TRUE all.equal(fm1s, fm1saa) TRUE ################# When I changed 'method' to "ML" in this example, the result suggested that the adjustment to sigma also affected the standard errors and t values for the fixed effects. If the p-values had not been 0, they also would have been affected: fm2 <- lme(distance ~ age, Orthodont, random = ~ age | Subject, method="ML") (fm2sa <- summary(fm2)) Linear mixed-effects model fit by maximum likelihood Data: Orthodont AIC BIC logLik 451.2116 467.3044 -219.6058 Random effects: Formula: ~age | Subject Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 2.1940998 (Intr) age 0.2149245 -0.581 Residual 1.3100399 Fixed effects: distance ~ age Value Std.Error DF t-value p-value (Intercept) 16.761111 0.7678975 80 21.827277 0 age 0.660185 0.0705779 80 9.353997 0 Correlation: (Intr) age -0.848 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -3.305969237 -0.487429631 0.007597973 0.482237063 3.922789795 Number of Observations: 108 Number of Groups: 27 > (fm2s <- summary(fm2, adjustSigma=FALSE)) Linear mixed-effects model fit by maximum likelihood Data: Orthodont AIC BIC logLik 451.2116 467.3044 -219.6058 Random effects: Formula: ~age | Subject Structure: General positive-definite, Log-Cholesky parametrization StdDev Corr (Intercept) 2.1940998 (Intr) age 0.2149245 -0.581 Residual 1.3100399 Fixed effects: distance ~ age Value Std.Error DF t-value p-value (Intercept) 16.761111 0.7607541 80 22.03223 0 age 0.660185 0.0699213 80 9.44183 0 Correlation: (Intr) age -0.848 Standardized Within-Group Residuals: Min Q1 Med Q3 Max -3.305969237 -0.487429631 0.007597973 0.482237063 3.922789795 Number of Observations: 108 Number of Groups: 27 > Does this answer the question? spencer graves Christoph Buser wrote: > Dear R-list > > I have a question concerning the argument "adjustSigma" in the > function "lme" of the package "nlme". > > The help page says: > > "the residual standard error is multiplied by sqrt(nobs/(nobs - > npar)), converting it to a REML-like estimate." > > Having a look into the code I found: > > stdFixed <- sqrt(diag(as.matrix(object$varFix))) > > if (object$method == "ML" && adjustSigma == TRUE) { > stdFixed <- sqrt(object$dims$N/(object$dims$N - length(stdFixed))) * > stdFixed > } > > tTable <- data.frame(fixed, stdFixed, object$fixDF[["X"]], > fixed/stdFixed, fixed) > > > To my understanding, only the standard error for the fixed > coefficients is adapted and not the residual standard error. > > Therefore only the tTable of the output is affected by the > argument "adjustSigma", but not the estimate for residual > standard error (see the artificial example below). > > May someone explain to me if there is an error in my > understanding of the help page and the R code? > Thank you very much. > > Best regards, > > Christoph Buser > > -------------------------------------------------------------- > Christoph Buser <[EMAIL PROTECTED]> > Seminar fuer Statistik, LEO C13 > ETH Zurich 8092 Zurich SWITZERLAND > phone: x-41-44-632-4673 fax: 632-1228 > http://stat.ethz.ch/~buser/ > -------------------------------------------------------------- > > > Example > ------- > > set.seed(1) > dat <- data.frame(y = rnorm(16), fac1 = rep(1:4, each = 4), > fac2 = rep(1:2,each = 8)) > > telme <- lme(y ~ fac1, data = dat, random = ~ 1 | fac2, method = "ML") > summary(telme) > summary(telme, adjustSigma = FALSE) > > ______________________________________________ > R-help@stat.math.ethz.ch mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html