10-fold cross-validation is easily done at R level: there is generic code in MASS, the book knn was written to support.
knn and lda have options for leave-one-out cross-validation just because there are compuiationally efficient algorithms for those cases. On Tue, 6 Jun 2006, Liaw, Andy wrote: > You might want to check out the function tune.knn() in the e1071 package. > > Andy > > _____ > > From: [EMAIL PROTECTED] on behalf of Tim Smith > Sent: Tue 6/6/2006 8:29 PM > To: r-help@stat.math.ethz.ch > Subject: [R] knn - 10 fold cross validation [Broadcast] > > > > Hi, > > I was trying to get the optimal 'k' for the knn. To do this I was using > the following function : > > > knn.cvk <- function(datmat, cl, k = 2:9) { > datmatT <- (datmat) > cv.err <- cl.pred <- c() > > for (i in k) { > newpre <- as.vector(knn.cv(datmatT, cl, k = i)) > cl.pred <- cbind(cl.pred, newpre) > cv.err <- c(cv.err, sum(cl != newpre)) > > } > k0 <- k[which.min(cv.err)] > print(k0) > return(k0) > } > > > However, the knn.cv function does a 'leave one out' cross validation. I > checked the documentation to see if I could change this, but it appears that > I cannot. Since I have large datasets, I would like to do 10 fold cross > validation, instead of the 'leave one out'. > > > Is there some other function that I can use that will give me a 10 fold > cross validation for KNN ? > > many thanks. > > __________________________________________________ > > > > [[alternative HTML version deleted]] > > ______________________________________________ > R-help@stat.math.ethz.ch mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > <https://stat.ethz.ch/mailman/listinfo/r-help> > PLEASE do read the posting guide! > http://www.R-project.org/posting-guide.html > <http://www.R-project.org/posting-guide.html> > > ______________________________________________ > R-help@stat.math.ethz.ch mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html > -- Brian D. Ripley, [EMAIL PROTECTED] Professor of Applied Statistics, http://www.stats.ox.ac.uk/~ripley/ University of Oxford, Tel: +44 1865 272861 (self) 1 South Parks Road, +44 1865 272866 (PA) Oxford OX1 3TG, UK Fax: +44 1865 272595 ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide! http://www.R-project.org/posting-guide.html