List:

Thank you for the replies to my post yesterday. Gabor and Phil also gave
useful replies on how to improve the function by relying on mapply
rather than the explicit for loop. In general, I try and use the family
of apply functions rather than the looping constructs such as for, while
etc as a matter of practice.

However, it seems the mapply function in this case is slower (in terms
of CPU speed) than the for loop. Here is an example.

# data needed for example

items <- list(item1 = c(0,1,2), item2 = c(0,1), item3 = c(0,1,2,3,4),
item4 = c(0,1), item5=c(0,1,2,3,4), 
item6=c(0,1,2,3))
score <- c(2,1,3,1,3,2) 
theta <- c(-1,-.5,0,.5,1)

# My old function using the for loop

like.mat <- function(score, items, theta){
   like.mat <- matrix(numeric(length(items) * length(theta)), ncol =
length(theta))   
   for(i in 1:length(items)) like.mat[i, ] <- pcm(theta, items[[i]],
score[[i]]) 
   like.mat   
   }

system.time(like.mat(score,items,theta))
[1]  0  0  0 NA NA

# Revised using mapply

like.mat <- function(score, items, theta){
matrix(mapply(pcm,rep(theta,length(items)),items,score),ncol=length(thet
a),byrow=TRUE)
}

> system.time(like.mat(score,items,theta))
[1] 0.03 0.00 0.03   NA   NA


It is obviously slower to use mapply, but nominaly. So, let's actually
look at this within the context of the full program I am working on. For
context, I am evaluating an integral using Gaussian quadrature. This is
a psychometric problem where the function 'pcm" is Master's partial
credit model and 'score' is the student's score on test item i. When an
item has two categories (0,1), pcm reduces to the Rasch model for
dichotomous data. The dnorm is set at N(0,1) by default, but the
parameters of the population distribution are estimated from a separate
procedure and are normally input into the function, but this default
works for the example.

Here is the full program.

library(statmod)

# Master's partial credit model
pcm <- function(theta,d,score){
     exp(rowSums(outer(theta,d[1:score],'-')))/
     apply(exp(apply(outer(theta,d, '-'), 1, cumsum)), 2, sum)
   }

like.mat <- function(score, items, theta){
   like.mat <- matrix(numeric(length(items) * length(theta)), ncol =
length(theta))   
   for(i in 1:length(items)) like.mat[i, ] <- pcm(theta, items[[i]],
score[[i]]) 
   like.mat   
   }

# turn this off for now
#like.mat <- function(score, items, theta){
#matrix(mapply(pcm,rep(theta,length(items)),items,score),ncol=length(the
ta),byrow=TRUE)
#}

class.numer <- function(score,items, prof_cut, mu=0, sigma=1, aboveQ){
   gauss_numer <- gauss.quad(49,kind="laguerre")
   if(aboveQ==FALSE){   
      mat <- rbind(like.mat(score,items, (prof_cut-gauss_numer$nodes)),
dnorm(prof_cut-gauss_numer$nodes, mean=mu, sd=sigma))
      } else { mat <- rbind(like.mat(score,items,
(gauss_numer$nodes+prof_cut)), dnorm(gauss_numer$nodes+prof_cut,
mean=mu,                 sd=sigma))
   }   
   f_y <- rbind(apply(mat, 2, prod), exp(gauss_numer$nodes),
gauss_numer$weights)
   sum(apply(f_y,2,prod))
   }

class.denom <- function(score,items, mu=0, sigma=1){
   gauss_denom <- gauss.quad.prob(49, dist='normal', mu=mu, sigma=sigma)
   mat <-
rbind(like.mat(score,items,gauss_denom$nodes),gauss_denom$weights) 
   sum(apply(mat, 2, prod))
   }

class.acc <-function(score,items,prof_cut, mu=0, sigma=1, aboveQ=TRUE){
   result <- class.numer(score,items,prof_cut, mu,sigma,
aboveQ)/class.denom(score,items, mu, sigma)
   return(result)
   }

# Test the function "class.acc"
items <- list(item1 = c(0,1,2), item2 = c(0,1), item3 = c(0,1,2,3,4),
item4 = c(0,1), item5=c(0,1,2,3,4), 
item6=c(0,1,2,3))
score <- c(2,1,3,1,3,2) 

# This is the system time when using the for loop for the like.mat
function
system.time(class.acc(score,items,1,aboveQ=T))
[1] 0.04 0.00 0.04   NA   NA

# This is the system time using the mapply for the like.mat function
system.time(class.acc(score,items,1,aboveQ=T))
[1] 0.70 0.00 0.73   NA   NA


There is a substantial improvement in CPU seconds when the for loop is
applied rather than using the mapply function. I experimented with
adding more items and varying the quadrature points and it always turned
out the for loop was faster.

Given this result, I wonder what advice might be offered. Is there an
inherent reason one might opt for the mapply function (such as
reliability, etc) even when it compromises computational speed? Or,
should the issue of computational speed be considered ahead of common
advice to rely on the family of apply functions instead of the explicit
loops.

Thanks for your consideration of my question,
Harold

orm       i386-pc-mingw32           
arch           i386                      
os             mingw32                   
system         i386, mingw32             
status                                   
major          2                         
minor          3.0                       
year           2006                      
month          04                        
day            24                        
svn rev        37909                     
language       R                         
version.string Version 2.3.0 (2006-04-24)





        [[alternative HTML version deleted]]

______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to