Hi, If I set the p.adjust="none", does it meant that the output p values from the pairwise.t.test will be the same as those from individual t.tests (set var.equal=T, alternative="t")?
I actually got different p values from the two tests. See below. Is it supposed to be this way? Thanks Johnny > x [1] 61.6 52.7 61.3 65.2 62.8 63.7 64.8 58.7 44.9 57.0 64.3 55.1 50.0 41.0 [15] 43.0 45.9 52.2 45.5 46.9 31.6 40.6 44.8 39.4 31.0 37.5 32.6 23.2 34.6 [29] 38.3 38.1 19.5 21.2 15.8 33.3 28.6 25.8 > Grp [1] Yng Yng Yng Yng Yng Yng Yng Yng Yng Yng Yng Yng Med Med Med Med Med Med [19] Med Med Med Med Med Med Old Old Old Old Old Old Old Old Old Old Old Old Levels: Yng Med Old > pairwise.t.test(x=x,g=Grp,p.adjust.method="none") Pairwise comparisons using t tests with pooled SD data: x and Grp Yng Med Med 1.0e-06 - Old 2.0e-12 2.6e-05 P value adjustment method: none > t.test(x=x[1:12],y=x[25:36],var.equal=T, alternative="t") Two Sample t-test data: x[1:12] and x[25:36] t = 10.5986, df = 22, p-value = 4.149e-10 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: 24.37106 36.22894 sample estimates: mean of x mean of y 59.34167 29.04167 [[alternative HTML version deleted]] ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.