Hi all, I'm running a monte carlo test of a neural network tool I've developed, and it looks like it's going to take a very long time if I run it in R so I'm interested in translating my code (included below) into something faster like Fortran (which I'll have to learn from scratch). However, as you'll see my code loads the nnet library and uses it quite a bit, and I don't have a good sense of how this impacts the translation process; will I have to translate all the code for the nnet library itself as well?
Any pointers would be greatly appreciated! Here's my code: #This code replicates the simulation performed by Rouder et al (2005), #which attempts to test the estimation of weibull distribution parameters #from sample data. In this implementation, their HB estimation method is #replaced by an iterative neural network approach. library(nnet) data.gen=function(iterations,min.sample.size,max.sample.size,min.shift,max.shift,min.scale,max.scale,min.shape,max.shape){ #set up some collection vectors sample.size=vector(mode="numeric",length=iterations) exp.shift=vector(mode="numeric",length=iterations) exp.scale=vector(mode="numeric",length=iterations) exp.shape=vector(mode="numeric",length=iterations) for(i in 1:iterations){ #sample from the parameter space sample.size[i]=round(runif(1,min.sample.size,max.sample.size),digits=0) exp.shift[i]=runif(1,min.shift,max.shift) exp.scale[i]=runif(1,min.scale,max.scale) exp.shape[i]=runif(1,min.shape,max.shape) #generate rt data and record summary stats obs.rt=rweibull(sample.size[i],exp.shape[i],exp.scale[i])+exp.shift[i] if(i==1){ obs.stats=summary(obs.rt) }else{ obs.stats=rbind(obs.stats,summary(obs.rt)) } } row.names(obs.stats)=c(1:iterations) obs.stats=as.data.frame(obs.stats) obs=as.data.frame(cbind(obs.stats,sample.size,exp.shift,exp.scale,exp.shape)) names(obs)=c("min","q1","med","mean","q3","max","samples","exp.shift","exp.scale","exp.shape") return(obs) } #set working directory setwd("E:/Various Data/NNEst/NetWeibull/Rouder data") stadler=read.table("bayest.par") names(stadler)=c("exp.shift","exp.scale","exp.shape") cell.size=20 sim.size=600 #first train initial neural nets training.data=data.gen(1e4,cell.size,cell.size,.1,1,.1,1,1,4) #train nn.shift with error checking ok=F while(ok==F){ nn1.shift=nnet(exp.shift~min+q1+med+mean+q3+max+samples,data=training.data,size=8,linout=T,rang=1e-08,maxit=500,trace=F) cor.shift=predict(nn.shift,training.data[,c(1:7)],type="raw") temp=hist(cor.shift,plot=F) if(length(temp$counts[temp$counts>0])>10){ ok=T } } #train nn.scale with error checking ok=F while(ok==F){ nn1.scale=nnet(exp.scale~min+q1+med+mean+q3+max+samples,data=training.data,size=8,linout=T,rang=1e-08,maxit=500,trace=F) cor.scale=predict(nn.scale,training.data[,c(1:7)],type="raw") temp=hist(cor.scale,plot=F) if(length(temp$counts[temp$counts>0])>10){ ok=T } } #train nn.shape with error checking ok=F while(ok==F){ nn1.shape=nnet(exp.shape~min+q1+med+mean+q3+max+samples,data=training.data,size=8,linout=T,rang=1e-08,maxit=500,trace=F) cor.shape=predict(nn.shape,training.data[,c(1:7)],type="raw") temp=hist(cor.shape,plot=F) if(length(temp$counts[temp$counts>0])>10){ ok=T } } #run simulation obs.stats=matrix(0,80,7) ind.shift.err=matrix(0,80,sim.size) ind.scale.err=matrix(0,80,sim.size) ind.shape.err=matrix(0,80,sim.size) group.shift.err=vector(mode="numeric",length=sim.size) group.scale.err=vector(mode="numeric",length=sim.size) group.shape.err=vector(mode="numeric",length=sim.size) for(i in 1:sim.size){ for(j in 1:80){ obs.stats[j,]=c(summary(rweibull(cell.size,stadler$exp.shape[j],stadler$exp.scale[j])+stadler$exp.shift[j]),cell.size) } obs.stats=as.data.frame(obs.stats) names(obs.stats)=c("min","q1","med","mean","q3","max","samples") #estimation iteration 1 cor.shift=predict(nn1.shift,obs.stats,type="raw") cor.scale=predict(nn1.scale,obs.stats,type="raw") cor.shape=predict(nn1.shape,obs.stats,type="raw") min.obs.samples=min(obs.stats$samples) max.obs.samples=max(obs.stats$samples) min.shift=quantile(cor.shift,seq(0,1,.05))[2] max.shift=quantile(cor.shift,seq(0,1,.05))[20] min.scale=quantile(cor.scale,seq(0,1,.05))[2] max.scale=quantile(cor.scale,seq(0,1,.05))[20] min.shape=quantile(cor.shape,seq(0,1,.05))[2] max.shape=quantile(cor.shape,seq(0,1,.05))[20] #re-train nets to reduced parameter space training.data=data.gen(1e4,min.obs.samples,max.obs.samples,min.shift,max.shift,min.scale,max.scale,min.shape,max.shape) #train nn.shift with error checking ok=F while(ok==F){ nn2.shift=nnet(exp.shift~min+q1+med+mean+q3+max+samples,data=training.data,size=8,linout=T,rang=1e-08,maxit=500,trace=F) cor.shift=predict(nn2.shift,training.data[,c(1:7)],type="raw") temp=hist(cor.shift,plot=F) if(length(temp$counts[temp$counts>0])>10){ ok=T } } #train nn.scale with error checking ok=F while(ok==F){ nn2.scale=nnet(exp.scale~min+q1+med+mean+q3+max+samples,data=training.data,size=8,linout=T,rang=1e-08,maxit=500,trace=F) cor.scale=predict(nn2.scale,training.data[,c(1:7)],type="raw") temp=hist(cor.scale,plot=F) if(length(temp$counts[temp$counts>0])>10){ ok=T } } #train nn.shape with error checking ok=F while(ok==F){ nn2.shape=nnet(exp.shape~min+q1+med+mean+q3+max+samples,data=training.data,size=8,linout=T,rang=1e-08,maxit=500,trace=F) cor.shape=predict(nn2.shape,training.data[,c(1:7)],type="raw") temp=hist(cor.shape,plot=F) if(length(temp$counts[temp$counts>0])>10){ ok=T } } #estimation iteration 2 cor.shift=predict(nn2.shift,obs.stats,type="raw") cor.scale=predict(nn2.scale,obs.stats,type="raw") cor.shape=predict(nn2.shape,obs.stats,type="raw") #record error ind.shift.err[,i]=cor.shift-stadler$exp.shift ind.scale.err[,i]=cor.scale-stadler$exp.scale ind.shape.err[,i]=cor.shape-stadler$exp.shape group.shift.err[i]=mean(cor.shift)-mean(stadler$exp.shift) group.scale.err[i]=mean(cor.scale)-mean(stadler$exp.scale) group.shape.err[i]=mean(cor.shape)-mean(stadler$exp.shape) } results=as.data.frame(rbind(cbind(sd(c(ind.shift.err[,1:162])),sd(c(ind.scale.err[,1:162])),sd(c(ind.shape.err[,1:162]))),cbind(sd(group.shift.err[1:162]),sd(group.scale.err[1:162]),sd(group.shape.err[1:162])))) results -- Mike Lawrence http://arts.uwaterloo.ca/~m4lawren "The road to wisdom? Well, it's plain and simple to express: Err and err and err again, but less and less and less." - Piet Hein ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.