Perhaps using 'ave' and 'cut': df <- data.frame(x=runif(100, 0.1, 1), y=rnorm(100, 0.2, 0.6)) df$xcut<-cut(df$x, seq(0, 1, 0.1)) df$z<-ave(df$y, df$xcut) df[order(df$x),]
Stefano -----Messaggio originale----- Da: [EMAIL PROTECTED] [mailto:[EMAIL PROTECTED] conto di [EMAIL PROTECTED] Inviato: venerdì 15 settembre 2006 17.45 A: [email protected] Oggetto: [R] Grouping columns in a data frame based on the values of a column Dear R users, This is a trivial question, there might even be an R function for it, but I have to do it many times and wonder if there is an efficient for it. Suppose we have a data frame like this: d <- data.frame(x=sample(seq(0.1:1, by=0.01), size=100, replace=TRUE), y=rnorm(100, 0.2, 0.6)) and want to have the average of y for a given interval of x, for example mean(y)[0>x>0.1]. Is there a simple way of doing this or I need to improvise? Thank you so much for any help Eleni Rapsomaniki ______________________________________________ [email protected] mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code. ______________________________________________ [email protected] mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.
