On Tue, 2006-10-17 at 12:34 -0700, Li Zhang wrote: > Y X Z > 42.0 7.0 33.0 > 33.0 4.0 41.0 > 75.0 16.0 7.0 > 28.0 3.0 49.0 > 91.0 21.0 5.0 > 55.0 8.0 31.0 > > > data<-read.table("d.txt",header=TRUE) > mod<-lm(data$Y~data$X+data$Z) > --------------------------------------- > > I would like to know the predict value at a new level, > say > > X=10 Z=30
> dat <- scan() 1: 42.0 7.0 33.0 4: 33.0 4.0 41.0 7: 75.0 16.0 7.0 10: 28.0 3.0 49.0 13: 91.0 21.0 5.0 16: 55.0 8.0 31.0 19: Read 18 items > dat <- as.data.frame(matrix(dat, ncol = 3, byrow = TRUE)) > names(dat) <- c("X","Y","Z") > dat X Y Z 1 42 7 33 2 33 4 41 3 75 16 7 4 28 3 49 5 91 21 5 6 55 8 31 > mod <- lm(Y ~ X + Z, data = dat) # note use of data argument > pred <- predict(mod, newdata = list(X = 10, Z = 30)) > pred [1] -0.003469617 or > pred <- predict(mod, newdata = data.frame(X = 10, Z = 30)) > pred [1] -0.003469617 HTH G > > Is there a function available to calculate it > directly? > > Thank you > > ______________________________________________ > R-help@stat.math.ethz.ch mailing list > https://stat.ethz.ch/mailman/listinfo/r-help > PLEASE do read the posting guide http://www.R-project.org/posting-guide.html > and provide commented, minimal, self-contained, reproducible code. -- %~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~% *Note new Address and Fax and Telephone numbers from 10th April 2006* %~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~% Gavin Simpson [t] +44 (0)20 7679 0522 ECRC [f] +44 (0)20 7679 0565 UCL Department of Geography Pearson Building [e] gavin.simpsonATNOSPAMucl.ac.uk Gower Street London, UK [w] http://www.ucl.ac.uk/~ucfagls/cv/ WC1E 6BT [w] http://www.ucl.ac.uk/~ucfagls/ %~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~%~% ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.