In the course of exploring response prediction, I stumbled upon a small discrepancy between the CIs produced by predict.lm() and all.effects()
require(mlmRev) require(effects) hsb.lm <- lm(mAch ~ minrty * sector, Hsb82) hsb.new <- data.frame( minrty = rep(c('No', 'Yes'), 2), sector = rep(c('Public', 'Catholic'), each = 2)) hsb.eff <- all.effects(hsb.lm) cbind( hsb.new, predict(hsb.lm, hsb.new, interval = 'confidence', type = 'response') ) # the following lower and upper bounds differ starting with the fourth decimal place data.frame( hsb.new, fit = hsb.eff[[1]]$fit, lwr = hsb.eff[[1]]$lower, upr = hsb.eff[[1]]$upper ) Is this due to rounding or algorithm? _____________________________ Professor Michael Kubovy University of Virginia Department of Psychology USPS: P.O.Box 400400 Charlottesville, VA 22904-4400 Parcels: Room 102 Gilmer Hall McCormick Road Charlottesville, VA 22903 Office: B011 +1-434-982-4729 Lab: B019 +1-434-982-4751 Fax: +1-434-982-4766 WWW: http://www.people.virginia.edu/~mk9y/ ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.