I was hoping for some advice regarding possible explanations for the fitted probability values I obtained for a multinomial logistic regression. The analysis aims to predict whether Capgras delusions (present/absent) are associated with group (ABH, SV, homicide; values = 1,2,3,), controlling for previous violence. What has me puzzled is that for each combination the fitted probabilities are identical. I haven't seen this in the worked examples I have come across and was interested to know if this is a problem or what might be the cause for this. I ran an analysis with another independent variable and obtained a similar pattern.
Any assistance with this is appreciated Bob Green > predictors <- expand.grid(group=1:3, in.acute.danger = c("y","n"), violent.convictions = c("y","n")) > p.fit <- predict(mod.multacute, predictors, type='probs') > p.fit 1 2 3 1 0.4615070 0.3077061 0.2307869 2 0.4615070 0.3077061 0.2307869 3 0.4615070 0.3077061 0.2307869 4 0.7741997 0.1290310 0.0967693 5 0.7741997 0.1290310 0.0967693 6 0.7741997 0.1290310 0.0967693 7 0.4230927 0.3846055 0.1923017 8 0.4230927 0.3846055 0.1923017 9 0.4230927 0.3846055 0.1923017 10 0.7058783 0.1647063 0.1294153 11 0.7058783 0.1647063 0.1294153 12 0.7058783 0.1647063 0.1294153 > mod.multacute <- multinom(group ~ in.acute.danger * violent.convictions, data = kc, na.action = na.omit) # weights: 15 (8 variable) initial value 170.284905 iter 10 value 131.016050 final value 130.993722 converged > summary(mod.multacute, cor=F, Wald=T) Call: multinom(formula = group ~ in.acute.danger * violent.convictions, data = kc, na.action = na.omit) Coefficients: (Intercept) in.acute.dangery violent.convictionsy in.acute.dangery:violent.convictionsy 2 -1.455279 1.3599055 -0.3364982 0.02651913 3 -1.696416 0.9078901 -0.3830842 0.47860722 Std. Errors: (Intercept) in.acute.dangery violent.convictionsy in.acute.dangery:violent.convictionsy 2 0.2968082 0.5282077 0.6162498 0.9936493 3 0.3279838 0.6312569 0.6946869 1.1284891 Value/SE (Wald statistics): (Intercept) in.acute.dangery violent.convictionsy in.acute.dangery:violent.convictionsy 2 -4.903094 2.574566 -0.5460419 0.02668862 3 -5.172256 1.438226 -0.5514486 0.42411327 Residual Deviance: 261.9874 AIC: 277.9874 > Anova (mod.multacute) Anova Table (Type II tests) Response: group LR Chisq Df Pr(>Chisq) in.acute.danger 10.9335 2 0.004225 ** violent.convictions 0.5957 2 0.742430 in.acute.danger:violent.convictions 0.1895 2 0.909600 --- Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.