[EMAIL PROTECTED] napsal dne 19.06.2007 12:23:58:

> Hi
> 
> It often depends on your attitude to  limits for outlying observations. 
> Boxplot has some identifying routine for selecting outlying points.
> 
>  Any procedure usually requires somebody to choose which observation is 
> outlying and why. You can use e.g. all values which are beyond some 
> threshold based on sd but that holds only if distribution is normal.
> 
> set.seed(1)
> x<-rnorm(x)

Sorry, it shall be 

x <- rnorm(1000)


> ul <- mean(x) +3*sd(x)
> ll <- mean(x) -3*sd(x)
> beyond <- (x>ul)  | ( x <ll)
> 
> > x[beyond]
> [1] 3.810277
> 
> Regards
> Petr
> 
> [EMAIL PROTECTED]
> 
> [EMAIL PROTECTED] napsal dne 19.06.2007 11:29:17:
> 
> > hello,
> > are there functions to detecte outlying observations in samples?
> > thanks.
> > 
> > 
> > 
> > 
> > 
> > 
> > 
> > 
> > 
> 
___________________________________________________________________________
> > 
> > 
> > 
> > 
> > 
> >    [[alternative HTML version deleted]]
> > 
> > ______________________________________________
> > [email protected] mailing list
> > https://stat.ethz.ch/mailman/listinfo/r-help
> > PLEASE do read the posting guide 
> http://www.R-project.org/posting-guide.html
> > and provide commented, minimal, self-contained, reproducible code.
> 
> ______________________________________________
> [email protected] mailing list
> https://stat.ethz.ch/mailman/listinfo/r-help
> PLEASE do read the posting guide 
http://www.R-project.org/posting-guide.html
> and provide commented, minimal, self-contained, reproducible code.

______________________________________________
[email protected] mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to