Here is the modified script for computing the 'sd': v1 <- NA v2 <- rnorm(6) v3 <- rnorm(6) v4 <- rnorm(6) v5 <- rnorm(6) v6 <- rnorm(6) v7 <- rnorm(6) v8 <- rnorm(6) v8 <- NA
list <- list(v1,v2,v3,v4,v5,v6,v7,v8) categ <- c(NA,"cat1","cat1","cat1","cat2","cat2","cat2",NA) # create partitioned list list.cat <- split(list, categ) # combine each partition into a matrix list.mat <- lapply(list.cat, function(x) do.call('rbind', x)) # now take the means of each column lapply(list.mat, colMeans) # compute the 'sd' by using 'apply' on the columns lapply(list.mat, apply, 2, sd) On 7/31/07, 8rino-Luca Pantani <[EMAIL PROTECTED]> wrote: > > Hi Jim, > > that's exactly what I'm looking for. Thank you so much. I think, I > > should look for some further documentation on list handling. > I think I will do the same................... > Thanks to Jim I learned "textConnection" and "rowMeans". > > Jim, could you please go a step further and tell me how to use lapply to > calculate > the sd instead of the mean of the same items? > I mean > sd(-0.6442149 0.02354036 -1.40362589) > sd(-1.1829260 1.17099178 -0.046778203) > sd(-0.2047012 -1.36186952 0.13045724) > etc > > x <- read.table(textConnection(" v1 v2 v3 v4 v5 v6 v7 v8 > NA -0.6442149 0.02354036 -1.40362589 -1.1829260 1.17099178 -0.046778203 NA > NA -0.2047012 -1.36186952 0.13045724 2.1411553 0.49248118 -0.233788840 NA > NA -1.1986041 -0.42197792 -0.84651458 -0.1327081 -0.18690065 0.443908897 NA > NA -0.2097442 1.50445971 1.57005071 -0.1053442 1.50050976 -1.649740180 NA > NA -0.7343465 -1.76763996 0.06961015 -0.8179396 -0.65552410 0.003991354 NA > NA -1.3888750 0.53722404 0.25269771 -1.2342698 -0.01243247 -0.228020092 > NA"), header=TRUE) > > > > > -- Jim Holtman Cincinnati, OH +1 513 646 9390 What is the problem you are trying to solve? ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.