Hello, I have two questions concerning the RWeka package:
1.) First question: How can one perform a cross validation, -say 10fold- for a given data set and given model ? 2.) Second question What is the correct syntax for the parametrization of e.g. Kernel classifiers interface m1 <- SMO(Species ~ ., data = iris, control = Weka_control(K="weka.classifiers.functions.supportVector.RBFKernel",G=0.1)) m2 <- SMO(Species ~ ., data = iris, control = Weka_control(K="weka.classifiers.functions.supportVector.RBFKernel",G=1.0)) > m1 SMO Kernel used: RBF kernel: K(x,y) = e^-(0.01* <x-y,x-y>^2) ## should be: RBF kernel: K(x,y) = e^-(0.1* <x-y,x-y>^2) > m2 SMO Kernel used: RBF kernel: K(x,y) = e^-(0.01* <x-y,x-y>^2) ## should be: RBF kernel: K(x,y) = e^-(1.0* <x-y,x-y>^2) That is, the control arguments ignores the parameter 'G' (Gamma) for the above syntax. What's wrong with this syntax ? many thanks Bjoern ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.