Hello,

        I have two questions concerning the RWeka package:

        1.) First question:
        How can one perform a cross validation, -say 10fold- for a given data 
set and given model ?

        2.) Second question
        What is the correct syntax for the parametrization of e.g. Kernel 
classifiers interface
  m1 <- SMO(Species ~ ., data = iris, control = 
Weka_control(K="weka.classifiers.functions.supportVector.RBFKernel",G=0.1))
  m2 <- SMO(Species ~ ., data = iris, control = 
Weka_control(K="weka.classifiers.functions.supportVector.RBFKernel",G=1.0))

        > m1
        SMO

        Kernel used:
        RBF kernel: K(x,y) = e^-(0.01* <x-y,x-y>^2)      

        ## should be: RBF kernel: K(x,y) = e^-(0.1* <x-y,x-y>^2)      

        > m2
        SMO

        Kernel used:
        RBF kernel: K(x,y) = e^-(0.01* <x-y,x-y>^2)

        ## should be: RBF kernel: K(x,y) = e^-(1.0* <x-y,x-y>^2)      

        That is, the control arguments ignores the parameter 'G' (Gamma) for 
the above syntax.
        What's wrong with this syntax ? 


many thanks
Bjoern

______________________________________________
R-help@stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-help
PLEASE do read the posting guide http://www.R-project.org/posting-guide.html
and provide commented, minimal, self-contained, reproducible code.

Reply via email to