G'day Thomas, On Mon, 3 Sep 2007 10:08:08 +0200 <[EMAIL PROTECTED]> wrote:
> What's wrong with my code? > > Require(quadprog) library(quadprog) ? :) > Dmat<-diag(1,7,7) > # muss als quadratische Matrix eingegeben werden > Dmat > dvec<-matrix(0,7,1) # muss als Spaltenvektor eingegeben werden > dvec > mu<-0 # (in Mio. €) > bvec<-c(1,mu,matrix(0,7,1)) # muss als Spaltenvektor eingegeben werden > bvec > mu_r<-c(19.7,33.0,0.0,49.7, 82.5, 39.0,11.8) > Amat<-matrix(c(matrix(1,1,7),7*mu_r,diag(1,7,7)),9,7,byrow=T) > # muss als Matrix angegeben werden, wie sie wirklich ist > Amat > meq<-2 > loesung<-solve.QP(Dmat,dvec,Amat=t(Amat),bvec=bvec,meq=2) With the commands above, I get on my system: > loesung<-solve.QP(Dmat,dvec,Amat=t(Amat),bvec=bvec,meq=2) Error in solve.QP(Dmat, dvec, Amat = t(Amat), bvec = bvec, meq = 2) : constraints are inconsistent, no solution! Which is a bit strange, since Dmat is the identity matrix, so there should be little room for numerical problems. OTOH, it is known that the Goldfarb-Idnani algorithm can have problem in rare occasions if the problem is "ill-scaled"; see the work of Powell. Changing the definition of Amat to > Amat<-matrix(c(matrix(1,1,7),mu_r,diag(1,7,7)),9,7,byrow=T) leads to a successful call to solve.QP. And since mu=0, I really wonder why you scaled up the vector mu_r by a factor of 7 when putting it into Amat.... :) > loesung<-solve.QP(Dmat,dvec,Amat=t(Amat),bvec=bvec,meq=2) Now, with the solution I obtained the rest of your commands show: > loesung$solution %*% mu_r [,1] [1,] 6.068172e-15 > sum(loesung$solution) [1] 1 > for (i in 1:7){ a<-loesung$solution[i]>=0 print(a) } [1] TRUE [1] TRUE [1] TRUE [1] TRUE [1] FALSE [1] FALSE [1] TRUE But: > for (i in 1:7){ a<-loesung$solution[i]>=- .Machine$double.eps*1000 print(a) } [1] TRUE [1] TRUE [1] TRUE [1] TRUE [1] TRUE [1] TRUE [1] TRUE > for (i in 1:7) print(loesung$solution[i]) [1] 0 [1] 0 [1] 1 [1] 0 [1] -4.669169e-17 [1] -1.436586e-17 [1] 8.881784e-16 This is a consequence of finite precision arithmetic. Just as you should not compare to numeric numbers directly for equality but rather that the absolute value of their difference is smaller than an appropriate chosen threshold, you should not check whether a number is bigger or equal to zero, but whether it is bigger or equal to an appropriately chosen negative threshold. More information are given in FAQ 7.31. HTH. Cheers, Berwin =========================== Full address ============================= Berwin A Turlach Tel.: +65 6515 4416 (secr) Dept of Statistics and Applied Probability +65 6515 6650 (self) Faculty of Science FAX : +65 6872 3919 National University of Singapore 6 Science Drive 2, Blk S16, Level 7 e-mail: [EMAIL PROTECTED] Singapore 117546 http://www.stat.nus.edu.sg/~statba ______________________________________________ R-help@stat.math.ethz.ch mailing list https://stat.ethz.ch/mailman/listinfo/r-help PLEASE do read the posting guide http://www.R-project.org/posting-guide.html and provide commented, minimal, self-contained, reproducible code.