Dear R-sig-epi members,

I have a small question concerning a test statistic I would like to construct.

In our study we want to compare the performance of three chromogenic media 
(BMR, BR and OX) for detection of Methicillin Resistant Staphylococcus aureus. 
Presence of MRSA is checked by PCR.

A typical dataset looks like this:

   typ reality plate count
1  bmr     yes   yes    39
2  bmr     yes    no     6
3  bmr      no   yes     2
4  bmr      no    no    56
5   ox     yes   yes    40
6   ox     yes    no     6
7   ox      no   yes    14
8   ox      no    no    43
9   br     yes   yes    43
10  br     yes    no     5
11  br      no   yes    14
12  br      no    no    41

where typ = de type of chromogenic medium
reality = do the bacteria represent MRSA as verified by PCR (yes or no)
plate = are the bacteria recognized as MRSA as observed on the medium? (yes or 
no)


or in array format
, , typ = bmr

       plate
reality  yes no
   yes    39  6
   no      2 56

, , typ = br

       plate
reality  yes no
   yes    43  5
   no     14 41

, , typ = ox

       plate
reality  yes no
   yes    40  6
   no     14 43


Thus, for example
   typ reality plate count
1  bmr     yes   yes    39  --> are true positives
3  bmr      no   yes     2  --> are false positives

In particular, we want to compare the ratio of true positives over true 
positives + false negatives among media. For example for bmr this value, 
referred to as "spe" = 39/(39+6) = 0.867

To compare the spe's between the three media, I was thinking of a test 
statistic comparable to the Breslow-Day statistic (for testing homogeneity of 
odds ratios) where our test statistic equals the sum of [(spe[i] - 
spe_hat[i])²/spe_hat[i]]. The spe_hat corresponds to the spe value using the 
expected frequencies of n11k (n11k_hat) and n12k (n12k_hat)of the i-th partial 
table, having the same marginal totals as the observed data, yet having odds 
ratio equal to Mantel-Haenszel estimator (the common odds ratio among type 
medium).
My problem/question is how to calculate the wanted spe_hat, or else the 
expected n11k_hat and n12k_hat ??

Below you find some of my R-code.
Many thanks in advance.
Dieter Anseeuw

mrsa<-read.csv('mrsa.csv', header=T, sep=";")
mrsa.array<-xtabs(count~reality+plate+typ, data=mrsa)
spe.fun<-function(x){
  ### calculate observed spe's
  spe<-x[1,1,]/(x[1,1,]+x[1,2,])

   ### get estimate of common odds ratio
  theta <- mantelhaen.test(x, correct=FALSE)$estimate
   ### observed frequencies
  n11k <- x[1,1,]
  n22k <- x[2,2,]
  n12k <- x[1,2,]
  n21k <- x[2,1,]
   ### expected frequencies?? spe_hat???

  K<-dim(x)[3]

  for (i in 1:K){
    spe.statistic<-sum((spe[i]-spe_hat[i])^2/spe_hat[i])
  }

  dfree<-K-1
  pval<-1-pchisq(spe.statistic,dfree)

  list(test.statistic=spe.statistic, degrees_freedom=dfree, p=pval)
  }


--
Dr. Ir. Dieter Anseeuw
Lecturer & Coordinator Afstandsonderwijs Groenmanagement
Katho Campus Roeselare
Wilgenstraat 32
8800 Roeselare Belgium

Direct phone: +32 51 23 29 68
http://www.katho.be/hivb
http://www.linkedin.com/in/dieteranseeuw


        [[alternative HTML version deleted]]

_______________________________________________
R-sig-Epi@stat.math.ethz.ch mailing list
https://stat.ethz.ch/mailman/listinfo/r-sig-epi

Reply via email to