I run the example with clusterR: no_cores <- parallel::detectCores() -1 raster::beginCluster(no_cores) ?????? res <- raster::clusterR(inp, raster::stackApply, args = list(indices=c(2,2,3,3,1,1),fun = mean)) raster::endCluster()
And the result is: > res class?????????? : RasterBrick dimensions : 180, 360, 64800, 3?? (nrow, ncol, ncell, nlayers) resolution : 1, 1?? (x, y) extent???????? : -180, 180, -90, 90?? (xmin, xmax, ymin, ymax) crs?????????????? : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0 source???????? : memory names?????????? : layer.1, layer.2, layer.3 min values :???????? 1.5,???????? 3.5,???????? 5.5 max values :???????? 1.5,???????? 3.5,???????? 5.5?? layer.1, layer.2, layer.3 (?) So what corrensponds to what? If I run: res2 <- stackApply(inp,c(2,2,3,3,1,1),mean) The result is: > res2 class : RasterBrick dimensions : 180, 360, 64800, 3 (nrow, ncol, ncell, nlayers) resolution : 1, 1 (x, y) extent : -180, 180, -90, 90 (xmin, xmax, ymin, ymax) crs : +proj=longlat +datum=WGS84 +ellps=WGS84 +towgs84=0,0,0 source : memory names : index_2, index_3, index_1 min values : 1.5, 3.5, 5.5 max values : 1.5, 3.5, 5.5 There is no consistency with the names of the output and obscure correspondence with the indices in the case of clusterR [[alternative HTML version deleted]] _______________________________________________ R-sig-Geo mailing list R-sig-Geo@r-project.org https://stat.ethz.ch/mailman/listinfo/r-sig-geo