I am trying to use gwr.sel to apply the AIC method for bandwidth selection in SPGWR. R version is 2.10.1 (used for compatibility with Rpy--however, the following problem occurs directly from within R). SPGWR version is 0.6-4. First I run global regression, then gwr()with default CV method for bandwidth selection with no problems. Then I run "aic" bandwidth selection method, which outputs bandwidth results. Then I run gwr(), which produces no output. Perhaps I'm using the wrong command? I can't find many examples of gwr() implemented with "aic". Please share your ideas if you have any. Thanks.
> library(spgwr) Loading required package: sp Loading required package: maptools Loading required package: foreign Loading required package: lattice NOTE: default kernel and CV criteria changed see help pages for details > library(foreign) > data <- read.dbf("C:/GIS/Hunter/Thesis/GISData/Parcel/Albany/AlbCnty/Polygon2004/test2.dbf") > data <- subset(data, GOOGDIST > 0) > data <- subset(data, ACRES > .5) > data_lm <- lm(SALE_PRICE ~ ACRES + CUR_TOT_A + HHINC + PERGTBACH, data = data) > data_lm_sum <- summary(data_lm) > tmp<-print(data_lm_sum) Call: lm(formula = SALE_PRICE ~ ACRES + CUR_TOT_A + HHINC + PERGTBACH, data = data) Residuals: Min 1Q Median 3Q Max -890883 -92357 -66457 76176 1550181 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 8.997e+04 2.566e+04 3.507 0.000483 *** ACRES -1.999e+03 3.915e+02 -5.106 4.26e-07 *** CUR_TOT_A 1.993e+00 9.443e-02 21.104 < 2e-16 *** HHINC -7.636e-02 5.363e-01 -0.142 0.886810 PERGTBACH 9.287e+03 5.020e+04 0.185 0.853272 --- Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 Residual standard error: 186700 on 689 degrees of freedom Multiple R-squared: 0.4061, Adjusted R-squared: 0.4027 F-statistic: 117.8 on 4 and 689 DF, p-value: < 2.2e-16 > data_bw <- gwr.sel(SALE_PRICE ~ ACRES + CUR_TOT_A + HHINC + PERGTBACH , data = data, coords = cbind(data$X, data$Y)) Bandwidth: 79378.23 CV score: 2.508302e+13 Bandwidth: 128308.4 CV score: 2.549703e+13 Bandwidth: 49137.69 CV score: 2.444211e+13 Bandwidth: 30448.02 CV score: 2.369592e+13 Bandwidth: 18897.16 CV score: 2.35517e+13 Bandwidth: 17792.42 CV score: 2.365362e+13 Bandwidth: 23918.27 CV score: 2.340727e+13 Bandwidth: 26412.41 CV score: 2.348778e+13 Bandwidth: 23178.31 CV score: 2.339931e+13 Bandwidth: 22740.56 CV score: 2.339894e+13 Bandwidth: 22908.52 CV score: 2.339868e+13 Bandwidth: 22910.54 CV score: 2.339868e+13 Bandwidth: 22909.77 CV score: 2.339868e+13 Bandwidth: 22909.78 CV score: 2.339868e+13 Bandwidth: 22909.78 CV score: 2.339868e+13 Bandwidth: 22909.78 CV score: 2.339868e+13 Bandwidth: 22909.78 CV score: 2.339868e+13 > data_gauss <- gwr(SALE_PRICE ~ ACRES + CUR_TOT_A + HHINC + PERGTBACH, data = data, coords = cbind(data$X, data$Y), bandwidth = data_bw, hatmatrix = TRUE) > data_gauss_sum <- summary(data_gauss) > print (data_gauss_sum) Length Class Mode SDF 1 SpatialPointsDataFrame S4 lhat 481636 -none- numeric lm 11 -none- list results 14 -none- list bandwidth 1 -none- numeric adapt 0 -none- NULL hatmatrix 1 -none- logical gweight 1 -none- character this.call 6 -none- call > print (data_gauss) Call: gwr(formula = SALE_PRICE ~ ACRES + CUR_TOT_A + HHINC + PERGTBACH, data = data, coords = cbind(data$X, data$Y), bandwidth = data_bw, hatmatrix = TRUE) Kernel function: gwr.Gauss Fixed bandwidth: 22909.78 Summary of GWR coefficient estimates: Min. 1st Qu. Median 3rd Qu. Max. Global X.Intercept. -2.883e+05 -4.166e+04 1.135e+05 1.655e+05 2.834e+05 89969.4089 ACRES -3.259e+03 -2.678e+03 -1.572e+03 9.080e+02 8.611e+03 -1998.9124 CUR_TOT_A 2.233e-02 1.261e+00 1.628e+00 2.049e+00 2.380e+00 1.9928 HHINC -5.563e+00 -1.219e+00 3.129e-01 2.753e+00 8.023e+00 -0.0764 PERGTBACH -3.023e+05 -9.237e+04 -5.303e+04 -7.264e+03 1.014e+05 9287.3433 Number of data points: 694 Effective number of parameters (residual: 2traceS - traceS'S): 29.87522 Effective degrees of freedom (residual: 2traceS - traceS'S): 664.1248 Sigma (residual: 2traceS - traceS'S): 170145.2 Effective number of parameters (model: traceS): 21.99972 Effective degrees of freedom (model: traceS): 672.0003 Sigma (model: traceS): 169145.3 Sigma (ML): 166442.7 AICc (GWR p. 61, eq 2.33; p. 96, eq. 4.21): 18704.23 AIC (GWR p. 96, eq. 4.22): 18678.59 Residual sum of squares: 1.922601e+13 > data_bw_aic <- gwr.sel(SALE_PRICE ~ ACRES + CUR_TOT_A + HHINC + PERGTBACH , data = data, coords = cbind(data$X, data$Y), method="aic") Bandwidth: 79378.23 AIC: 18795.23 Bandwidth: 128308.4 AIC: 18811.03 Bandwidth: 49137.69 AIC: 18768.93 Bandwidth: 30448.02 AIC: 18733.32 Bandwidth: 18897.16 AIC: 18678.52 Bandwidth: 11758.34 AIC: 18593.90 > data_bw_aic_sum <- summary(data_bw_aic) > data_bw_aic_sum > print(data_bw_aic) > data_gauss_aic <- gwr(SALE_PRICE ~ ACRES + CUR_TOT_A + HHINC + PERGTBACH, data = data, coords = cbind(data$X, data$Y), bandwidth = data_bw_aic, hatmatrix = TRUE) >print(data_gauss_aic) > summary(data_gauss_aic) > data looks like this: UID YEAR X Y LAT LONG ACRES SLOPE CUR_TOT_A FLOODPER 1 6482 2004 698260.3 1446285 42.80053 -73.73233 0.7309970 1 40000 0.0000000000 5 8554 2004 695351.2 1438002 42.77801 -73.74342 0.8890091 1 7400 0.0000000000 7 15413 2004 696033.0 1431745 42.76088 -73.74108 0.5565335 1 50000 0.0000000000 10 8220 2004 680872.2 1435917 42.77268 -73.79744 0.8693349 1 27200 0.0000000000 11 8221 2004 681023.1 1436053 42.77303 -73.79688 0.8018674 1 25900 0.0000000000 12 8792 2004 691488.3 1439555 42.78245 -73.75765 0.8236566 1 42000 0.0000000000 13 8793 2004 691556.9 1439692 42.78277 -73.75746 0.8610513 1 42000 0.0000000000 14 14411 2004 682812.3 1426310 42.74625 -73.79048 1.9767706 1 150000 0.0000000000 15 14656 2004 688672.5 1432607 42.76348 -73.76833 3.5036509 1 65700 0.0000000000 16 15103 2004 686513.4 1428931 42.75343 -73.77653 4.5957896 1 352800 0.0000000000 19 89916 2004 702825.7 1439163 42.78107 -73.71557 5.4003465 1 23200 0.0000000000 22 93898 2004 704736.3 1432229 42.76197 -73.70865 0.9085830 1 8400 0.0000000000 25 10109 2004 657502.9 1427039 42.74891 -73.88458 3.1770620 1 53600 0.0000000000 26 10296 2004 657568.5 1427583 42.75031 -73.88438 0.9898759 1 39200 0.5419490988 GOOGADDR GOOGDIST PROP_CLASS SALE_PRICE HHINC 1 1251 New Loudon Rd, Cohoes, NY 12047, USA 21597 311 42500 25964 5 22 Meadow St, Cohoes, NY 12047, USA 19195 311 31500 25964 7 44 Graffin Dr, Latham, NY 12110, USA 18764 311 396500 25964 10 4119-4195 River Rd, Latham, NY 12110, USA 18941 311 71454 16222 11 4119-4195 River Rd, Latham, NY 12110, USA 18941 311 71454 16222 12 112 Dunsbach Ferry Rd, Cohoes, NY 12047, USA 19164 311 65000 16222 13 114 Dunsbach Ferry Rd, Cohoes, NY 12047, USA 19208 311 68000 16222 14 155 Wade Rd, Latham, NY 12110, USA 13289 330 100000 16222 15 100 Sparrowbush Rd, Latham, NY 12110, USA 16458 311 275000 16222 16 4 Stanley Cir, Latham, NY 12110, USA 15605 330 307000 16222 19 28 Edward St, Cohoes, NY 12047, USA 21813 311 114685 51214 22 8 Oxford Cir, Cohoes, NY 12047, USA 22499 311 342551 51214 25 72 Morris Rd, Colonie, NY 12205, USA 14924 330 190000 19865 26 79 Morris Rd, Schenectady, NY 12304, USA 14929 330 18000 19865 PERGTBACH PERLTBACH PERCAPINC 1 0.11521926 0.8847807 14998 5 0.11521926 0.8847807 14998 7 0.11521926 0.8847807 14998 10 0.12627425 0.8737257 12147 11 0.12627425 0.8737257 12147 12 0.12627425 0.8737257 12147 13 0.12627425 0.8737257 12147 14 0.12627425 0.8737257 12147 15 0.12627425 0.8737257 12147 16 0.12627425 0.8737257 12147 19 0.37195452 0.6280455 25915 22 0.37195452 0.6280455 25915 25 0.16253444 0.8374656 10992 26 0.16253444 0.8374656 10992 [[alternative HTML version deleted]]
_______________________________________________ R-sig-Geo mailing list R-sig-Geo@stat.math.ethz.ch https://stat.ethz.ch/mailman/listinfo/r-sig-geo