Dear List, I wanna know if lag or error model is better to examine a spatial regression model. However, the results of their p-values are the same, which shows no difference between the models in the aspect. Please kindly help and thanks.
Elaine code rm(list=ls()) datam <-read.csv("c:/migration/Mig_ratio_20100808.csv",header=T, row.names=1) library(ncf) library(spdep) # get the upper bound up <- knearneigh(cbind(datam$lat,datam$lon)) upknn <- knn2nb(up) updist1 <- nbdists(upknn,cbind(datam$lat,datam$lon)) updist1 updistvec <- unlist(updist1) updistvec upmaxd <- max(updistvec) upmaxd # Define coordinates, neighbours, and spatial weights coords<-cbind(datam$lat,datam$lon) coords<-as.matrix(coords) # Define neighbourhood (here distance 8) nb8<-dnearneigh(coords,0,8.12) summary(nb8) #length(nb8) #sum(card(nb8)) # Spatial weights, illustrated with coding style "W" (row standardized) nb8.w<-nb2listw(nb8, glist=NULL, style="W") # std model datam.sd<-scale(datam) datam.std<-as.data.frame(datam.sd) summary (datam.std) mean(datam.std) # obtain standard deviation sd(datam.std) mig.std <-lm( datam.std$S ~ datam.std$coast + datam.std$topo_var +datam.std$prec_ran, data = datam.std) summary(mig.std) mig.lagrange <-lm.LMtests(mig.std,nb8.w,test=c("LMerr","RLMerr","LMlag","RLMlag","SARMA")) print(mig.lagrange) Lagrange multiplier diagnostics for spatial dependence data: model: lm(formula = datam.std$S ~ datam.std$coast + datam.std$topo_var +datam.std$prec_ran, data = datam.std) weights: nb8.w LMerr = 79589.91, df = 1, p-value < 2.2e-16 Lagrange multiplier diagnostics for spatial dependence data: model: lm(formula = datam.std$S ~ datam.std$coast + datam.std$topo_var +datam.std$prec_ran, data = datam.std) weights: nb8.w RLMerr = 68943.02, df = 1, p-value < 2.2e-16 Lagrange multiplier diagnostics for spatial dependence data: model: lm(formula = datam.std$S ~ datam.std$coast + datam.std$topo_var +datam.std$prec_ran, data = datam.std) weights: nb8.w LMlag = 13000.91, df = 1, p-value < 2.2e-16 Lagrange multiplier diagnostics for spatial dependence data: model: lm(formula = datam.std$S ~ datam.std$coast + datam.std$topo_var +datam.std$prec_ran, data = datam.std) weights: nb8.w RLMlag = 2354.020, df = 1, p-value < 2.2e-16 Lagrange multiplier diagnostics for spatial dependence data: model: lm(formula = datam.std$S ~ datam.std$coast + datam.std$topo_var +datam.std$prec_ran, data = datam.std) weights: nb8.w SARMA = 81943.93, df = 2, p-value < 2.2e-16 [[alternative HTML version deleted]] _______________________________________________ R-sig-Geo mailing list R-sig-Geo@stat.math.ethz.ch https://stat.ethz.ch/mailman/listinfo/r-sig-geo