Dear All,

Here are some simulations that I have run this morning. Romain's suggestion to compute xV.size() before the loop and Douglas' idea of using accumulate appear to work best. However, both are substantially slower than the r-base function.

I have also included two more versions: (i) one similar to Romain's but using pre-incrementation**in the loop and (ii) one using the iterator in the loop. Another option may be to use the C++ boost library. I don't know if anyone on this list has experience with using boost.

See the results of the simulations below (N=1000 data sets).
Ced

#####################################################################
## Functions.
Summing1 <- cxxfunction(signature(x="numeric"), '
      NumericVector xV(x);
      double out = sum(xV);
      return wrap(out);
',plugin="Rcpp")
Summing2 <- cxxfunction(signature(x="numeric"), '
      NumericVector xV(x);
      double out = 0.0;
      for(int i=0; i<xV.size(); i++) out += xV[i];
      return wrap(out);
',plugin="Rcpp")
Summing3 <- cxxfunction(signature(x="numeric"), '
      NumericVector xV(x);
      double out = 0.0; int N=xV.size();
      for(int i=0; i<N; i++) out += xV[i];
      return wrap(out);
',plugin="Rcpp")
Summing4 <- cxxfunction(signature(x="numeric"), '
      NumericVector xV(x);
      return wrap(std::accumulate(xV.begin(), xV.end(), double()));
',plugin="Rcpp")
Summing5 <- cxxfunction(signature(x="numeric"), '
      NumericVector xV(x);
      double out = 0.0; int N=xV.size();
      for(int i=0; i<N; ++i) out += xV[i];
      return wrap(out);
',plugin="Rcpp")
Summing6 <- cxxfunction(signature(x="numeric"), '
      NumericVector xV(x);
      double out = 0.0;
for(NumericVector::iterator i=xV.begin(); i!=xV.end(); ++i) out += *i;
      return wrap(out);
',plugin="Rcpp")

#####################################################################
## Simulation: Time Testing.
n <- 1000000; N <- 1000
time.Sum <- matrix(0,N,7);
for(i in 1:N){
x <- rnorm(n)
time.Sum[i,1] <- system.time(Summing1(x))[3];
time.Sum[i,2] <- system.time(Summing2(x))[3];
time.Sum[i,3] <- system.time(Summing3(x))[3];
time.Sum[i,4] <- system.time(Summing4(x))[3];
time.Sum[i,5] <- system.time(Summing5(x))[3];
time.Sum[i,6] <- system.time(Summing6(x))[3];
time.Sum[i,7] <- system.time(sum(x))[3];
}# i
time.df <- data.frame(time.Sum)
names(time.df) <- c("Sugar","Rcpp","Rcpp_N","Accumulate","Pre-increment","Iterator","R")
boxplot(time.df)

#####################################################################
## RESULTS:
formatC(summary(time.df),dec=3)
     Sugar                 Rcpp                Rcpp_N
 " Min.   :0.01600  " " Min.   :0.01000  " "Min.   :0.005000  "
 " 1st Qu.:0.01600  " " 1st Qu.:0.01000  " "1st Qu.:0.005000  "
 " Median :0.01600  " " Median :0.01100  " "Median :0.006000  "
 " Mean   :0.01631  " " Mean   :0.01060  " "Mean   :0.005668  "
 " 3rd Qu.:0.01600  " " 3rd Qu.:0.01100  " "3rd Qu.:0.006000  "
 " Max.   :0.03700  " " Max.   :0.02400  " "Max.   :0.020000  "
   Accumulate         Pre-increment           Iterator
 "Min.   :0.005000  " "Min.   :0.005000  " " Min.   :0.01000  "
 "1st Qu.:0.005000  " "1st Qu.:0.005000  " " 1st Qu.:0.01000  "
 "Median :0.006000  " "Median :0.006000  " " Median :0.01100  "
 "Mean   :0.005714  " "Mean   :0.005697  " " Mean   :0.01065  "
 "3rd Qu.:0.006000  " "3rd Qu.:0.006000  " " 3rd Qu.:0.01100  "
 "Max.   :0.029000  " "Max.   :0.021000  " " Max.   :0.03100  "
       R
 "Min.   :0.002000  "
 "1st Qu.:0.002000  "
 "Median :0.002000  "
 "Mean   :0.002211  "
 "3rd Qu.:0.002000  "
 "Max.   :0.004000  "
#####################################################################

PS: Apologies to Dirk as I have not followed his advice, yet.

--
Cedric Ginestet
Centre for Neuroimaging Sciences (L3.04)
NIHR Biomedical Research Centre
Institute of Psychiatry, Box P089
Kings College London
De Crespigny Park
London
SE5 8AF


On 04/01/11 15:37, Dirk Eddelbuettel wrote:
On 4 January 2011 at 15:14, Cedric Ginestet wrote:
| Happy new year to everyone,
|
| I have made a very straightforward comparison of the performance of standard 
R,
| Rcpp function and sugar, and found that the latter produces the poorest
| performance. Let me know what you think and how I could improve such
| performance assessment.
|
| ###################################################
| Summing1<- cxxfunction(signature(x="numeric"), '
|       NumericVector xV(x);
|       double out = sum(xV);
|       return wrap(out);
| ',plugin="Rcpp")
| Summing2<- cxxfunction(signature(x="numeric"), '
|       NumericVector xV(x);
|       double out = 0.0;
|       for(int i=0; i<xV.size(); i++) out += xV[i];
|       return wrap(out);
| ',plugin="Rcpp")
| ###################################################
| # Results.
| n<- 1000000; x<- rnorm(n)
| Summing1(x); Summing2(x); sum(x)
| #######################
| gives:
| [1] -396.6129
| [1] -396.6129
| [1] -396.6129
|
| ###################################################
| # Time.
| system.time(Summing1(x));    # Sugar
| system.time(Summing2(x));    # Rcpp
| system.time(sum(x));               # R-base
| ###################
|>  system.time(Summing1(x));
|    user  system elapsed
|   0.016   0.000   0.016
|>  system.time(Summing2(x));
|    user  system elapsed
|   0.008   0.000   0.011
|>  system.time(sum(x));
|    user  system elapsed
|   0.000   0.000   0.003
|
|
| Sugar appears to be the slowest! What about Rcpp basic loop? Why isn't as fast
| as the standard sum() in R-base?

1)  Try to think a about measurement error here; these times are all minuscule.

2)  Consider reading the list archive, we have better use of benchmarks using
     rbenchmark and replications; these are also some example in the examples
     right in Rcpp

3)  Consider reading the list archive and discussions about the NoNA tests.

4)  Lastly, consider Romain's point about a baseline using an empty function.

Dirk


| Cheers,
| Cedric
|
| --
| Cedric Ginestet
| Centre for Neuroimaging Sciences (L3.04)
| NIHR Biomedical Research Centre
| Institute of Psychiatry, Box P089
| Kings College London
| De Crespigny Park
| London
| SE5 8AF
|
|
| ----------------------------------------------------------------------
| _______________________________________________
| Rcpp-devel mailing list
| Rcpp-devel@lists.r-forge.r-project.org
| https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel

_______________________________________________
Rcpp-devel mailing list
Rcpp-devel@lists.r-forge.r-project.org
https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel

Reply via email to