On 29 April 2013 at 13:55, Christoph Bergmeir wrote: | Hi, | | thanks Dirk for the prompt reply. Ok, this was also the solution I had | in mind. I'll try to find the code in RcppDE or try to implement it | myself..I'll keep you posted with any advances.
I think this may do the trick: demo/environment.R in the RcppDE package: suppressMessages(library(RcppDE)) ## somewhat pathodological example with nuisance parameter mul Rastrigin <- function(x) { mul * (sum(x+2 - 10 * cos(2*pi*x)) + 20) } ## create a new environment associated with the function funenv <- environment(fun=Rastrigin) assign("mul", 2, envir=funenv) ## set value out <- DEoptim(Rastrigin, -25, 25, control=list(NP=10, trace=0), env=funenv) summary(out) Hth, Dirk | | Regards, | Christoph | | On 04/29/2013 01:44 PM, Dirk Eddelbuettel wrote: | > | > On 29 April 2013 at 12:37, Christoph Bergmeir wrote: | > | Dear list, | > | | > | I'm looking for some advice on a specific problem. Using RcppDE there is | > | the possibility to give the optimizer directly an external pointer to | > | the C++ function it will use as the objective function. I found this | > | mechanism pretty useful as it may speed up things quite a lot (I have a | > | problem where the speedup is from 17 minutes to some seconds), so that I | > | use the same mechanism as RcppDE in our package Rmalschains and in the | > | Rdonlp2 package, which is available from Rmetrics on Rforge. | > | | > | The problem that this mechanism has is that it cannot handle additional | > | parameters to the objective function. Having additional parameters is | > | > I think it can. The DEoptim folks, particularly Josh, pointed this out and | > the best general way is to assign all you need in a new environment -- which | > you can assign to from R and (thanks to Rcpp) from C++. Then pass that down. | > | > I think I have an example of that in the package but I don't have time right | > now to chase this. | > | > But yes, this _is_ a very neat feature and something that needs broader | > exposure. | > | > Maybe I can help in a few days. | > | > Dirk | > | > | often essential, because if you fit a model to data you need the data | > | available in the target function. I illustrate the problem with an | > | example I took from the RcppDE tests: | > | | > | #----------------------------------------- | > | | > | library(inline) | > | library(RcppDE) | > | | > | inc <- 'double rastrigin(SEXP xs) { //here I want to give it an | > | additional parameter: SEXP additional_parameter | > | | > | //Do something with the parameter, e.g. use it for result | > | calculation. Here we just want to print it | > | //double my_additional_parameter = | > | Rcpp::as<double>(additional_parameter); | > | //Rprintf("ap: %f\\n", my_additional_parameter); | > | | > | Rcpp::NumericVector x(xs); | > | int n = x.size(); | > | double sum = 20.0; | > | for (int i=0; i<n; i++) { | > | sum += x[i]+2 - 10*cos(2*M_PI*x[i]); | > | | > | } | > | return(sum); | > | } | > | ' | > | | > | src.xptr <- ' | > | typedef double (*funcPtr)(SEXP); | > | return(XPtr<funcPtr>(new funcPtr(&rastrigin))); | > | ' | > | create_xptr <- cxxfunction(signature(), body=src.xptr, inc=inc, | > | plugin="Rcpp") | > | | > | n <- 10 | > | maxIt <- 100 | > | | > | res <- RcppDE::DEoptim(fn=create_xptr(), lower=rep(-25, n), | > | upper=rep(25, n), | > | control=list(NP=10*n, itermax=maxIt, trace=FALSE)) #, | > | additional_paramater=25) | > | | > | res$optim | > | | > | #----------------------------------------- | > | | > | I currently get around this by having a global singleton object which | > | holds these parameters. This works but of course is not very nice when | > | it comes to parallelization. The code is more or less like this: | > | | > | //---------------------------------------------- | > | class TargetFunction { | > | | > | private: | > | | > | static TargetFunction *TargetFunctionSingleton; | > | std::vector<double> param; | > | double objval; | > | | > | public: | > | | > | void eval(const double* x, int n) { | > | double sum = 20.0; | > | for (int i=0; i<n; i++) { | > | sum += x[i]+2 - 10*cos(2*M_PI*x[i]); | > | }; | > | | > | //here I can use the parameter now!! | > | Rprintf("ap: %f\\n", param[0]); | > | | > | this->objval = sum; | > | }; | > | | > | void init(std::vector<double> & p_param) { | > | this->param = p_param; | > | }; | > | | > | static TargetFunction* getTargetFunctionSingleton() { | > | if( TargetFunctionSingleton == 0 ) | > | TargetFunctionSingleton = new TargetFunction(); | > | return TargetFunctionSingleton; | > | }; | > | | > | static void deleteTargetFunctionSingleton(){ | > | if( TargetFunctionSingleton == 0 ) return; | > | else { | > | delete TargetFunctionSingleton; | > | TargetFunctionSingleton = 0; | > | } | > | return; | > | }; | > | | > | double getObjVal() { | > | return(objval); | > | }; | > | | > | | > | }; | > | | > | TargetFunction* TargetFunction::TargetFunctionSingleton = 0; | > | | > | RcppExport SEXP targetFunction(SEXP p_par) | > | { | > | Rcpp::NumericVector par(p_par); | > | | > | TargetFunction* sp = TargetFunction::getTargetFunctionSingleton(); | > | | > | sp->eval(par.begin(), par.size()); | > | | > | return Rcpp::wrap(sp->getObjVal()); | > | | > | } | > | | > | RcppExport SEXP targetFunctionInit(SEXP p_param) { | > | | > | TargetFunction::deleteTargetFunctionSingleton(); | > | | > | TargetFunction* sp = TargetFunction::getTargetFunctionSingleton(); | > | | > | std::vector<double> param = Rcpp::as< std::vector<double> >(p_param); | > | | > | sp->init(param); | > | | > | return R_NilValue; | > | | > | } | > | | > | RcppExport SEXP GetTargetFunctionPtr() { | > | | > | typedef SEXP (*funcPtr)(SEXP); | > | | > | return (Rcpp::XPtr<funcPtr>(new funcPtr(&targetFunction))); | > | } | > | //----------------------------------------------------- | > | | > | Now, before doing the optimization, I call targetFunctionInit and set | > | the additional parameters. Afterwards, everything is as in the example | > | above, and I have the additional parameters available in the target | > | function. Now the question is how I could solve this more elegantly, or | > | more R like. The first thing that comes to mind is to use an R | > | environment instead of the singleton. However, how can I do this? I | > | could have a singleton list of objects and then use the address of the R | > | environment as a hash to find the right object in the list. But this is | > | probably not really the way R environments should be used, and I wonder | > | if this will cause any trouble. | > | | > | Any advise is highly appreciated. | > | | > | Regards, | > | Christoph | > | | > | -- | > | Christoph Bergmeir | > | e-mail: c.bergm...@decsai.ugr.es | > | Grupo SCI2S, DiCITS Lab (http://sci2s.ugr.es/DiCITS) | > | Dpto. de Ciencias de la Computacion e Inteligencia Artificial | > | E.T.S. Ingenierias de Informatica y Telecomunicacion | > | Universidad de Granada | > | 18071 - GRANADA (Spain) | > | _______________________________________________ | > | Rcpp-devel mailing list | > | Rcpp-devel@lists.r-forge.r-project.org | > | https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel | > | | -- | Christoph Bergmeir | e-mail: c.bergm...@decsai.ugr.es | Grupo SCI2S, DiCITS Lab (http://sci2s.ugr.es/DiCITS) | Dpto. de Ciencias de la Computacion e Inteligencia Artificial | E.T.S. Ingenierias de Informatica y Telecomunicacion | Universidad de Granada | 18071 - GRANADA (Spain) -- Dirk Eddelbuettel | e...@debian.org | http://dirk.eddelbuettel.com _______________________________________________ Rcpp-devel mailing list Rcpp-devel@lists.r-forge.r-project.org https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel