Folks- In my package, bayesm, I use backsolve() to invert upper-triangular arrays. I am in the process of converting my package to rccp-arma.
I thought I would test the analogous operation in arma by declaring the matrix as upper-triangular and inverting using solve(). To my surprise, pure R code was considerably faster than rcpp-armadillo for 50 x 50 and larger matrices. I attach an rmd and cpp files necessary to run this benchmark. I assume I'm doing something terribly wrong or naive in my use of rcpp-armadillo and would appreciate any thoughts on what causes these unexpected results. p Here are the results for those who do not want to compile the rmd file: 10 by 10 uppertriangular matrix; # 10 by 10 set.seed(777) k <- 10 m <- k + 10 A <- matrix(rnorm(k*m), m, k) R <- chol(t(A)%*%A) rep <- 500 microbenchmark(backsolve_R(rep, R),backsolve_rcpp(rep, R),times=10) ## Unit: microseconds ## expr min lq median uq max neval ## backsolve_R(rep, R) 3781.3 4002.4 4131.0 4958.8 6146.3 10 ## backsolve_rcpp(rep, R) 809.1 812.5 825.1 851.4 889.7 10 50 by 50 uppertriangular matrix # 50 by 50 set.seed(777) k <- 50 m <- k + 10 A <- matrix(rnorm(k*m), m, k) R <- chol(t(A)%*%A) rep <- 500 microbenchmark(backsolve_R(rep, R),backsolve_rcpp(rep, R),times=10) ## Unit: milliseconds ## expr min lq median uq max neval ## backsolve_R(rep, R) 18.92 19.40 19.97 20.94 44.22 10 ## backsolve_rcpp(rep, R) 36.67 36.88 37.13 37.28 37.41 10 100 by 100 uppertriangular matrix # 100 by 100 set.seed(777) k <- 100 m <- k+10 A <- matrix(rnorm(k*m), m, k) R <- chol(t(A)%*%A) rep <- 500 microbenchmark(backsolve_R(rep, R),backsolve_rcpp(rep,R),times=10) ## Unit: milliseconds ## expr min lq median uq max neval ## backsolve_R(rep, R) 101.5 102.4 103.2 104.4 126.8 10 ## backsolve_rcpp(rep, R) 251.6 251.8 251.8 252.0 254.0 10 -- Peter E. Rossi
// [[Rcpp::depends("RcppArmadillo")]] #include <RcppArmadillo.h> #include <Rcpp.h> using namespace arma; // [[Rcpp::export]] mat backsolve_rcpp(int rep, mat R) { // solve() and trimatu() mat RI; int k = R.n_rows; mat I = eye(k,k); mat R_upptri = trimatu(R); for(int i=0; i<rep; i++){ RI = solve(R_upptri,I); } return RI; }
backsolve_test.Rmd
Description: Binary data
_______________________________________________ Rcpp-devel mailing list Rcpp-devel@lists.r-forge.r-project.org https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel