I had ported the bayesm version a while a back, here it is: List rwishart(int nu, NumericMatrix const& V){// function to draw from Wishart (nu,V) and IW// // W ~ W(nu,V) E[W]=nuV// // WI=W^-1 E[WI]=V^-1/(nu-m-1) RNGScope rngscope; int m = V.nrow(); mat Vm(V.begin(), m, m, false); // Can't vectorise because Rcpp-sugar rchisq doesnt vectorise df argument // T has sqrt chisqs on diagonal and normals below diagonal and garbage above diagonal mat T(m,m); for(int i = 0; i < m; i++) { T(i,i) = sqrt(R::rchisq(nu-i)); } for(int j = 0; j < m; j++) { for(int i = j+1; i < m; i++) { T(i,j) = R::norm_rand(); }} // explicitly declare T as triangular // top triangular is NaN ### mat C = trans(trimatl(T)) * chol(Vm); mat CI = C.i();// C is the upper triangular root of Wishart // therefore, W=C'C this is the LU decomposition // Inv(W) = CICI' this is the UL decomp *not LU*!// W is Wishart draw, IW is W^-1 return List::create( _["W"] = trans(C) * C, _["IW"] = CI * trans(CI), _["C"] = C, _["CI"] = CI );}
On Thu, Jun 11, 2015 at 12:59 PM, Yue Li <gorilla...@gmail.com> wrote: > Dear List, > > I wonder if anyone could share their Rcpp code for an equivalence of > rWishart. I’ve come across a similar question in the forum: > > > http://stackoverflow.com/questions/23463852/generate-wishart-distribution-using-rwishart-within-rcpp > > Based on Dirk’s suggestion, I have my following attempt: > > // [[Rcpp::export]] > mat mvrnormArma(int n, vec mu, mat sigma) { > > int ncols = sigma.n_cols; > > mat Y = randn(n, ncols); > > return repmat(mu, 1, n).t() + Y * chol(sigma); > } > > > // [[Rcpp::export]] > mat rWishartCpp(mat sigma, int n) { > > mat X = mvrnormArma(1, zeros<vec>(sigma.n_rows), sigma); > > return X.t() * X; > } > > But this implementation does not take into account the degree of freedom. > In fact, I’m very fuzzy on how to incorporate df into the sampling process: > > I also checked the R code from baysm, namely rwishart, which samples from > rchisq instead (code pasted below). But I’m not sure how to relate the > simple naive code I have above with the baysm code below … > > function baysm_rwishart(nu, V) > { > m = nrow(V) > > df = (nu + nu - m + 1) - (nu - m + 1):nu > > if (m > 1) { > T = diag(sqrt(rchisq(c(rep(1, m)), df))) > T[lower.tri(T)] = rnorm((m * (m + 1)/2 - m)) > } > else { > T = sqrt(rchisq(1, df)) > } > > U = chol(V) > > C = t(T) %*% U > > CI = backsolve(C, diag(m)) > > return(list(W = crossprod(C), > IW = crossprod(t(CI)), C = C, > CI = CI)) > } > > Yue > > > > _______________________________________________ > Rcpp-devel mailing list > Rcpp-devel@lists.r-forge.r-project.org > https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel >
_______________________________________________ Rcpp-devel mailing list Rcpp-devel@lists.r-forge.r-project.org https://lists.r-forge.r-project.org/cgi-bin/mailman/listinfo/rcpp-devel