Here's my solution so SICP 1.19 (computing fibonacci numbers with a doubling transform)
;; 1.19 ;; T: ;; a = a + b ;; b = a ;; ;; T_pq: ;; a' = ap + (b+a)q ;; b' = bp + aq ;; ;; T_pq^2: ;; a'' = b'q + a'q + a'p ;; = (bp + aq)q + (bq + aq + ap)(p + q) ;; = bpq + aqq + bpq + apq + app + bqq + aqq + apq ;; = (a+b)2pq + (a+b)qq + a(pp + qq) ;; = a(pp+qq) + (b+a)(2pq+qq) ;; ;; b'' = b'p + a'q ;; = (bp + aq)p + (bq + aq + ap)q ;; = bpp + apq + bqq + aqq + apq ;; = b(pp+qq) + a(2pq+qq) ;; ;; Therefore, T_pq^2 = T_(pp+qq)(2pq+qq) define fib2(n) fib-iter(1 0 0 1 n) define fib-iter(a b p q n) cond { n = 0 } b even?(n) fib-iter(a b {square(p) + square(q)} {{ 2 * p * q } + square(q)} { n / 2 }) else fib-iter({{ b * q } + {a * q } + {a * p }} {{ b * p } + {a * q }} p q { n - 1 }) I wasn't too happy with how it turned out. For comparison, here's fib-iter in wart: def fib-iter(a b p q n) (if (iso n 0) b even?.n (fib-iter a b (+ square.p square.q) (+ square.q (* 2 p q)) (/ n 2)) :else (fib-iter (+ (* b q) (* a q) (* a p)) (+ (* b p) (* a q)) p q (- n 1))) To me this seems more readable. The benefits of curly infix seem entirely offset by requiring spaces around the operators. I wish it was closer to C, like: {b*q + a*q + a*p} Can y'all think of a nicer way to lay out fib-iter? Kartik http://github.com/akkartik/wart#readme ------------------------------------------------------------------------------ Live Security Virtual Conference Exclusive live event will cover all the ways today's security and threat landscape has changed and how IT managers can respond. Discussions will include endpoint security, mobile security and the latest in malware threats. http://www.accelacomm.com/jaw/sfrnl04242012/114/50122263/ _______________________________________________ Readable-discuss mailing list Readable-discuss@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/readable-discuss