Ah, that was a remnant of the parameter averaging to parameter median
change for the clustering
(http://thread.gmane.org/gmane.science.nmr.relax.devel/4647/focus=4648).
 Could you retroactively create a bug report for this?  That would be
useful for the release notes.

Cheers,

Edward



On 29 April 2014 19:56,  <[email protected]> wrote:
> Author: tlinnet
> Date: Tue Apr 29 19:56:12 2014
> New Revision: 22883
>
> URL: http://svn.gna.org/viewcvs/relax?rev=22883&view=rev
> Log:
> Fix for the relax_disp.parameter_copy function.
>
> The median of the values was not performed properly, since 0.0 was already in 
> the starting list of values.
>
> Modified:
>     trunk/specific_analyses/relax_disp/parameters.py
>
> Modified: trunk/specific_analyses/relax_disp/parameters.py
> URL: 
> http://svn.gna.org/viewcvs/relax/trunk/specific_analyses/relax_disp/parameters.py?rev=22883&r1=22882&r2=22883&view=diff
> ==============================================================================
> --- trunk/specific_analyses/relax_disp/parameters.py    (original)
> +++ trunk/specific_analyses/relax_disp/parameters.py    Tue Apr 29 19:56:12 
> 2014
> @@ -162,17 +162,17 @@
>      for spin_ids in loop_cluster():
>          # Initialise some variables.
>          model = None
> -        pA = [0.0]
> -        pB = [0.0]
> -        pC = [0.0]
> -        kex = [0.0]
> -        kex_AB = [0.0]
> -        kex_AC = [0.0]
> -        kex_BC = [0.0]
> -        k_AB = [0.0]
> -        kB = [0.0]
> -        kC = [0.0]
> -        tex = [0.0]
> +        pA = []
> +        pB = []
> +        pC = []
> +        kex = []
> +        kex_AB = []
> +        kex_AC = []
> +        kex_BC = []
> +        k_AB = []
> +        kB = []
> +        kC = []
> +        tex = []
>          count = 0
>          spins_from = []
>          spins_to = []
> @@ -240,38 +240,38 @@
>
>          # Take median of parameters.
>          if len(pA) > 1:
> -            pA = [median(pA)]
> -            print("Median pA value:  %.15f" % pA[0])
> +            pA = median(pA)
> +            print("Median pA value:  %.15f" % pA)
>          if len(pB) > 1:
> -            pB = [median(pB)]
> -            print("Median pA value:  %.15f" % pA[0])
> +            pB = median(pB)
> +            print("Median pB value:  %.15f" % pB)
>          if len(pC) > 1:
> -            pC = [median(pC)]
> -            print("Median pC value:  %.15f" % pC[0])
> +            pC = median(pC)
> +            print("Median pC value:  %.15f" % pC)
>          if len(kex) > 1:
> -            kex = [median(kex)]
> -            print("Median kex value: %.15f" % kex[0])
> +            kex = median(kex)
> +            print("Median kex value: %.15f" % kex)
>          if len(kex_AB) > 1:
> -            kex_AB = [median(kex_AB)]
> -            print("Median k_AB value: %.15f" % kex_AB[0])
> +            kex_AB = median(kex_AB)
> +            print("Median k_AB value: %.15f" % kex_AB)
>          if len(kex_AC) > 1:
> -            kex_AC = [median(kex_AC)]
> -            print("Median k_AC value: %.15f" % kex_AC[0])
> +            kex_AC = median(kex_AC)
> +            print("Median k_AC value: %.15f" % kex_AC)
>          if len(kex_BC) > 1:
> -            kex_BC = [median(kex_BC)]
> -            print("Median k_BC value: %.15f" % kex_BC[0])
> +            kex_BC = median(kex_BC)
> +            print("Median k_BC value: %.15f" % kex_BC)
>          if len(k_AB) > 1:
> -            k_AB = [median(k_AB)]
> -            print("Median k_AB value: %.15f" % k_AB[0])
> +            k_AB = median(k_AB)
> +            print("Median k_AB value: %.15f" % k_AB)
>          if len(kB) > 1:
> -            kB = [median(kB)]
> -            print("Median kB value:  %.15f" % kB[0])
> +            kB = median(kB)
> +            print("Median kB value:  %.15f" % kB)
>          if len(kC) > 1:
> -            kC = [median(kC)]
> -            print("Median kC value:  %.15f" % kC[0])
> +            kC = median(kC)
> +            print("Median kC value:  %.15f" % kC)
>          if len(tex) > 1:
> -            tex = [median(tex)]
> -            print("Median tex value: %.15f" % tex[0])
> +            tex = median(tex)
> +            print("Median tex value: %.15f" % tex)
>
>          # Loop over the spins, this time copying the parameters.
>          for i in range(len(spin_ids)):
> @@ -293,28 +293,28 @@
>
>              # The median parameters.
>              if 'pB' in spin_from.params and 'pC' not in spin_from.params:
> -                spin_to.pA = pA[0]
> -                spin_to.pB = pB[0]
> -                spin_to.pC = 1.0 - pA[0] - pB[0]
> +                spin_to.pA = pA
> +                spin_to.pB = pB
> +                spin_to.pC = 1.0 - pA - pB
>              elif 'pA' in spin_from.params:
> -                spin_to.pA = pA[0]
> -                spin_to.pB = 1.0 - pA[0]
> +                spin_to.pA = pA
> +                spin_to.pB = 1.0 - pA
>              if 'kex' in spin_from.params:
> -                spin_to.kex = kex[0]
> +                spin_to.kex = kex
>              if 'kex_AB' in spin_from.params:
> -                spin_to.kex_AB = kex_AB[0]
> +                spin_to.kex_AB = kex_AB
>              if 'kex_AC' in spin_from.params:
> -                spin_to.kex_AC = kex_AC[0]
> +                spin_to.kex_AC = kex_AC
>              if 'kex_BC' in spin_from.params:
> -                spin_to.kex_BC = kex_BC[0]
> +                spin_to.kex_BC = kex_BC
>              if 'k_AB' in spin_from.params:
> -                spin_to.k_AB = k_AB[0]
> +                spin_to.k_AB = k_AB
>              if 'kB' in spin_from.params:
> -                spin_to.kB = kB[0]
> +                spin_to.kB = kB
>              if 'kC' in spin_from.params:
> -                spin_to.kC = kC[0]
> +                spin_to.kC = kC
>              if 'tex' in spin_from.params:
> -                spin_to.tex = tex[0]
> +                spin_to.tex = tex
>
>              # All other spin specific parameters.
>              for param in spin_from.params:
>
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-commits mailing list
> [email protected]
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-commits

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to