Hi Ed.

That was done in 2 commits before.

The lib function just needs to have "replacing checks", replaced with mask
functions.

Then it is both forward and backward compatible.

Best
Troels



2014-06-12 14:14 GMT+02:00 Edward d'Auvergne <[email protected]>:

> Hi Troels,
>
> This commit seems to be missing the lib.dispersion.tsmfk01 changes
> needed to make the model functional.
>
> Cheers,
>
> Edward
>
>
>
> On 12 June 2014 13:56,  <[email protected]> wrote:
> > Author: tlinnet
> > Date: Thu Jun 12 13:56:12 2014
> > New Revision: 23880
> >
> > URL: http://svn.gna.org/viewcvs/relax?rev=23880&view=rev
> > Log:
> > Large increase in speed for model TSMFK01 by changing target functions
> to use multidimensional numpy arrays in calculation.
> >
> > This is done by restructuring data into multidimensional arrays of
> dimension [NE][NS][NM][NO][ND], which are
> > number of spins, number of magnetic field strength, number of offsets,
> maximum number of dispersion point.
> >
> > The speed comes from using numpy ufunc operations.
> >
> > The new version is 2.4X as fast per spin calculation, and 54X as fast
> for clustered analysis.
> >
> > The different in timings for 3 spectrometer frequencies, calculated for
> 1 spin or 100 clustered spins with 1000 iterations are:
> >
> > ----
> > VERSION 3.2.2
> > ----
> > 1 spin:
> >    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
> >         1    0.000    0.000    0.262    0.262 <string>:1(<module>)
> > 100 spin:
> >    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
> >         1    0.000    0.000   25.391   25.391 <string>:1(<module>)
> > ----
> > New version
> > ---
> >
> > 1 spin:
> >    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
> >         1    0.000    0.000    0.111    0.111 <string>:1(<module>)
> > 100 spin:
> >    ncalls  tottime  percall  cumtime  percall filename:lineno(function)
> >         1    0.000    0.000    0.468    0.468 <string>:1(<module>)
> >
> > Task #7807 (https://gna.org/task/index.php?7807): Speed-up of
> dispersion models for Clustered analysis.
> >
> > Modified:
> >     branches/disp_spin_speed/target_functions/relax_disp.py
> >
> > Modified: branches/disp_spin_speed/target_functions/relax_disp.py
> > URL:
> http://svn.gna.org/viewcvs/relax/branches/disp_spin_speed/target_functions/relax_disp.py?rev=23880&r1=23879&r2=23880&view=diff
> >
> ==============================================================================
> > --- branches/disp_spin_speed/target_functions/relax_disp.py
> (original)
> > +++ branches/disp_spin_speed/target_functions/relax_disp.py     Thu Jun
> 12 13:56:12 2014
> > @@ -395,7 +395,7 @@
> >              self.func = self.func_ns_mmq_3site_linear
> >
> >          # Setup special numpy array structures, for higher dimensional
> computation.
> > -        if model in [MODEL_B14, MODEL_B14_FULL, MODEL_CR72,
> MODEL_CR72_FULL]:
> > +        if model in [MODEL_B14, MODEL_B14_FULL, MODEL_CR72,
> MODEL_CR72_FULL, MODEL_TSMFK01]:
> >              # Get the shape of back_calc structure.
> >              # If using just one field, or having the same number of
> dispersion points, the shape would extend to that number.
> >              # Shape has to be: [ei][si][mi][oi].
> > @@ -478,7 +478,7 @@
> >                                  if self.missing[ei][si][mi][oi][di]:
> >                                      self.has_missing = True
> >                                      missing_a[ei][si][mi][oi][di] = 1.0
> > -                                if model in [MODEL_B14, MODEL_B14_FULL]:
> > +                                if model in [MODEL_B14, MODEL_B14_FULL,
> MODEL_TSMFK01]:
> >                                      self.power_a[ei][si][mi][oi][di] =
> int(round(self.cpmg_frqs[ei][mi][0][di] * self.relax_times[ei][mi]))
> >                                      self.tau_cpmg_a[ei][si][mi][oi][di]
> = 0.25 / self.cpmg_frqs[ei][mi][0][di]
> >
> > @@ -1989,29 +1989,22 @@
> >          dw = params[self.end_index[0]:self.end_index[1]]
> >          k_AB = params[self.end_index[1]]
> >
> > -        # Initialise.
> > -        chi2_sum = 0.0
> > -
> > -        # Loop over the spins.
> > -        for si in range(self.num_spins):
> > -            # Loop over the spectrometer frequencies.
> > -            for mi in range(self.num_frq):
> > -                # The R20 index.
> > -                r20a_index = mi + si*self.num_frq
> > -
> > -                # Convert dw from ppm to rad/s.
> > -                dw_frq = dw[si] * self.frqs[0][si][mi]
> > -
> > -                # Back calculate the R2eff values.
> > -                r2eff_TSMFK01(r20a=R20A[r20a_index], dw=dw_frq,
> dw_orig=dw, k_AB=k_AB, tcp=self.tau_cpmg[0][mi],
> back_calc=self.back_calc[0][si][mi][0],
> num_points=self.num_disp_points[0][si][mi][0])
> > -
> > -                # For all missing data points, set the back-calculated
> value to the measured values so that it has no effect on the chi-squared
> value.
> > -                for di in range(self.num_disp_points[0][si][mi][0]):
> > -                    if self.missing[0][si][mi][0][di]:
> > -                        self.back_calc[0][si][mi][0][di] =
> self.values[0][si][mi][0][di]
> > -
> > -                # Calculate and return the chi-squared value.
> > -                chi2_sum += chi2(self.values[0][si][mi][0],
> self.back_calc[0][si][mi][0], self.errors[0][si][mi][0])
> > +        # Convert dw from ppm to rad/s. Use the out argument, to pass
> directly to structure.
> > +        multiply( multiply.outer( dw.reshape(self.NE, self.NS),
> self.nm_no_nd_struct ), self.frqs_struct, out=self.dw_struct )
> > +
> > +        # Reshape R20A and R20B to per experiment, spin and frequency.
> > +        self.r20a_struct[:] = multiply.outer( R20A.reshape(self.NE,
> self.NS, self.NM), self.no_nd_struct )
> > +
> > +        # Back calculate the R2eff values.
> > +        r2eff_TSMFK01(r20a=self.r20a_struct, dw=self.dw_struct,
> dw_orig=dw, k_AB=k_AB, tcp=self.tau_cpmg_a, back_calc=self.back_calc_a,
> num_points=self.num_disp_points_a)
> > +
> > +        # Clean the data for all values, which is left over at the end
> of arrays.
> > +        self.back_calc_a = self.back_calc_a*self.disp_struct
> > +
> > +        ## For all missing data points, set the back-calculated value
> to the measured values so that it has no effect on the chi-squared value.
> > +        if self.has_missing:
> > +            # Replace with values.
> > +            self.back_calc_a[self.mask_replace_blank.mask] =
> self.values_a[self.mask_replace_blank.mask]
> >
> >          # Return the total chi-squared value.
> > -        return chi2_sum
> > +        return chi2_rankN(self.values_a, self.back_calc_a,
> self.errors_a)
> >
> >
> > _______________________________________________
> > relax (http://www.nmr-relax.com)
> >
> > This is the relax-commits mailing list
> > [email protected]
> >
> > To unsubscribe from this list, get a password
> > reminder, or change your subscription options,
> > visit the list information page at
> > https://mail.gna.org/listinfo/relax-commits
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-devel mailing list
> [email protected]
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-devel
>
_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
[email protected]

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to