Hi,

If all the 'No Rex' models are merged into a single model, then the
methods here would remain identical.  However the logic of the "if
model == MODEL_NOREX:" block would be modified to select the correct
target function based on the data that the user input.  Or even
simpler, the logic could be placed higher up in a function in the
specific_analyses.relax_disp.data module, and then a new argument
added to the target function class for choosing between the target
functions.  Note that a 4th target function will probably be added in
the future when off-resonance CPMG data is handled, to allow R1 to be
optimised with this data.

Cheers,

Edward



On 4 August 2014 19:22,  <tlin...@nmr-relax.com> wrote:
> Author: tlinnet
> Date: Mon Aug  4 19:22:10 2014
> New Revision: 24945
>
> URL: http://svn.gna.org/viewcvs/relax?rev=24945&view=rev
> Log:
> Implemented target and calculation function for MODEL_NOREX_R1RHO, 
> MODEL_NOREX_R1RHO_FIT_R1.
>
> bug #22440(https://gna.org/bugs/?22440): The "NOREX" model is not covering 
> R1rho models.
> sr #3135(https://gna.org/support/?3135): Optimisation of the R1 relaxation 
> rate for the off-resonance R1rho relaxation dispersion models.
>
> Modified:
>     branches/R1_fitting/target_functions/relax_disp.py
>
> Modified: branches/R1_fitting/target_functions/relax_disp.py
> URL: 
> http://svn.gna.org/viewcvs/relax/branches/R1_fitting/target_functions/relax_disp.py?rev=24945&r1=24944&r2=24945&view=diff
> ==============================================================================
> --- branches/R1_fitting/target_functions/relax_disp.py  (original)
> +++ branches/R1_fitting/target_functions/relax_disp.py  Mon Aug  4 19:22:10 
> 2014
> @@ -55,7 +55,7 @@
>  from lib.errors import RelaxError
>  from lib.float import isNaN
>  from target_functions.chi2 import chi2_rankN
> -from specific_analyses.relax_disp.variables import EXP_TYPE_CPMG_DQ, 
> EXP_TYPE_CPMG_MQ, EXP_TYPE_CPMG_PROTON_MQ, EXP_TYPE_CPMG_PROTON_SQ, 
> EXP_TYPE_CPMG_SQ, EXP_TYPE_CPMG_ZQ, EXP_TYPE_LIST_CPMG, EXP_TYPE_R1RHO, 
> MODEL_B14, MODEL_B14_FULL, MODEL_CR72, MODEL_CR72_FULL, MODEL_DPL94, 
> MODEL_DPL94_FIT_R1, MODEL_IT99, MODEL_LIST_CPMG, MODEL_LIST_FULL, 
> MODEL_LIST_MMQ, MODEL_LIST_MQ_CPMG, MODEL_LIST_NUMERIC, MODEL_LIST_R1RHO, 
> MODEL_LIST_R1RHO_FULL, MODEL_LIST_R1RHO_FIT_R1, MODEL_LM63, MODEL_LM63_3SITE, 
> MODEL_M61, MODEL_M61B, MODEL_MP05, MODEL_MMQ_CR72, MODEL_NOREX, 
> MODEL_NS_CPMG_2SITE_3D, MODEL_NS_CPMG_2SITE_3D_FULL, 
> MODEL_NS_CPMG_2SITE_EXPANDED, MODEL_NS_CPMG_2SITE_STAR, 
> MODEL_NS_CPMG_2SITE_STAR_FULL, MODEL_NS_MMQ_2SITE, MODEL_NS_MMQ_3SITE, 
> MODEL_NS_MMQ_3SITE_LINEAR, MODEL_NS_R1RHO_2SITE, MODEL_NS_R1RHO_3SITE, 
> MODEL_NS_R1RHO_3SITE_LINEAR, MODEL_PARAM_DW_MIX_DOUBLE, 
> MODEL_PARAM_DW_MIX_QUADRUPLE, MODEL_PARAM_INV_RELAX_TIMES, MODEL_PARAM_R20B, 
> MODEL_TAP03, MODEL_TP02, MODEL_TSMFK01
> +from specific_analyses.relax_disp.variables import EXP_TYPE_CPMG_DQ, 
> EXP_TYPE_CPMG_MQ, EXP_TYPE_CPMG_PROTON_MQ, EXP_TYPE_CPMG_PROTON_SQ, 
> EXP_TYPE_CPMG_SQ, EXP_TYPE_CPMG_ZQ, EXP_TYPE_LIST_CPMG, EXP_TYPE_R1RHO, 
> MODEL_B14, MODEL_B14_FULL, MODEL_CR72, MODEL_CR72_FULL, MODEL_DPL94, 
> MODEL_DPL94_FIT_R1, MODEL_IT99, MODEL_LIST_CPMG, MODEL_LIST_FULL, 
> MODEL_LIST_MMQ, MODEL_LIST_MQ_CPMG, MODEL_LIST_NUMERIC, MODEL_LIST_R1RHO, 
> MODEL_LIST_R1RHO_FULL, MODEL_LIST_R1RHO_FIT_R1, MODEL_LM63, MODEL_LM63_3SITE, 
> MODEL_M61, MODEL_M61B, MODEL_MP05, MODEL_MMQ_CR72, MODEL_NOREX, 
> MODEL_NOREX_R1RHO, MODEL_NOREX_R1RHO_FIT_R1, MODEL_NS_CPMG_2SITE_3D, 
> MODEL_NS_CPMG_2SITE_3D_FULL, MODEL_NS_CPMG_2SITE_EXPANDED, 
> MODEL_NS_CPMG_2SITE_STAR, MODEL_NS_CPMG_2SITE_STAR_FULL, MODEL_NS_MMQ_2SITE, 
> MODEL_NS_MMQ_3SITE, MODEL_NS_MMQ_3SITE_LINEAR, MODEL_NS_R1RHO_2SITE, 
> MODEL_NS_R1RHO_3SITE, MODEL_NS_R1RHO_3SITE_LINEAR, MODEL_PARAM_DW_MIX_DOUBLE, 
> MODEL_PARAM_DW_MIX_QUADRUPLE, MODEL_PARAM_INV_RELAX_TIMES, MODEL_PARAM_R20B, 
> MODEL_
 TAP03, MODEL_TP02, MODEL_TSMFK01
>
>
>  class Dispersion:
> @@ -482,6 +482,10 @@
>          # Set up the model.
>          if model == MODEL_NOREX:
>              self.func = self.func_NOREX
> +        if model == MODEL_NOREX_R1RHO:
> +            self.func = self.func_NOREX_R1RHO
> +        if model == MODEL_NOREX_R1RHO_FIT_R1:
> +            self.func = self.func_NOREX_R1RHO_FIT_R1
>          if model == MODEL_LM63:
>              self.func = self.func_LM63
>          if model == MODEL_LM63_3SITE:
> @@ -653,6 +657,35 @@
>          return chi2_rankN(self.values, self.back_calc, self.errors)
>
>
> +    def calc_NOREX_R1RHO(self, R1=None, r1rho_prime=None):
> +        """Calculation function for no exchange, for R1rho off resonance 
> models.
> +
> +        @keyword R1:            The R1 value.
> +        @type R1:               list of float
> +        @keyword r1rho_prime:   The R1rho value for all states in the 
> absence of exchange.
> +        @type r1rho_prime:      list of float
> +        @return:                The chi-squared value.
> +        @rtype:                 float
> +        """
> +
> +        # Reshape r1rho_prime to per experiment, spin and frequency.
> +        self.r1rho_prime_struct[:] = multiply.outer( 
> r1rho_prime.reshape(self.NE, self.NS, self.NM), self.no_nd_ones )
> +
> +        # Make back calculation.
> +        self.back_calc[:] = R1 * cos(self.tilt_angles)**2 + 
> self.r1rho_prime_struct * sin(self.tilt_angles)**2
> +
> +        # Clean the data for all values, which is left over at the end of 
> arrays.
> +        self.back_calc = self.back_calc*self.disp_struct
> +
> +        # For all missing data points, set the back-calculated value to the 
> measured values so that it has no effect on the chi-squared value.
> +        if self.has_missing:
> +            # Replace with values.
> +            self.back_calc[self.mask_replace_blank.mask] = 
> self.values[self.mask_replace_blank.mask]
> +
> +        # Return the total chi-squared value.
> +        return chi2_rankN(self.values, self.back_calc, self.errors)
> +
> +
>      def calc_ns_cpmg_2site_3D_chi2(self, R20A=None, R20B=None, dw=None, 
> pA=None, kex=None):
>          """Calculate the chi-squared value of the 'NS CPMG 2-site' models.
>
> @@ -1395,6 +1428,50 @@
>          return chi2_rankN(self.values, self.back_calc, self.errors)
>
>
> +    def func_NOREX_R1RHO(self, params):
> +        """Target function for no exchange, for R1rho off resonance models.
> +
> +        @param params:  The vector of parameter values.
> +        @type params:   numpy rank-1 float array
> +        @return:        The chi-squared value.
> +        @rtype:         float
> +        """
> +
> +        # Scaling.
> +        if self.scaling_flag:
> +            params = dot(params, self.scaling_matrix)
> +
> +        # Unpack the parameter values.
> +        r1rho_prime = params
> +
> +        # Calculate and return the chi-squared value.
> +        return self.calc_NOREX_R1RHO(R1=self.r1, r1rho_prime=r1rho_prime)
> +
> +
> +    def func_NOREX_R1RHO_FIT_R1(self, params):
> +        """Target function for no exchange, for R1rho off resonance models, 
> where R1 is fitted.
> +
> +        @param params:  The vector of parameter values.
> +        @type params:   numpy rank-1 float array
> +        @return:        The chi-squared value.
> +        @rtype:         float
> +        """
> +
> +        # Scaling.
> +        if self.scaling_flag:
> +            params = dot(params, self.scaling_matrix)
> +
> +        # Unpack the parameter values.
> +        r1 = params[:self.end_index[0]]
> +        r1rho_prime = params[self.end_index[0]:self.end_index[1]]
> +
> +        # Reshape R1 to per experiment, spin and frequency.
> +        self.r1_struct[:] = multiply.outer( r1.reshape(self.NE, self.NS, 
> self.NM), self.no_nd_ones )
> +
> +        # Calculate and return the chi-squared value.
> +        return self.calc_NOREX_R1RHO(R1=self.r1_struct, 
> r1rho_prime=r1rho_prime)
> +
> +
>      def func_ns_cpmg_2site_3D(self, params):
>          """Target function for the reduced numerical solution for the 2-site 
> Bloch-McConnell equations.
>
>
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-commits mailing list
> relax-comm...@gna.org
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-commits

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
relax-devel@gna.org

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to