Hi Edward.

I is just target_functions/c_chi2.c where you dont sum the elements, but
return as array.

Best
Troels

2014-08-28 15:30 GMT+02:00 Edward d'Auvergne <edw...@nmr-relax.com>:
> Hi Troels,
>
> Could you derive the chi-squared Jacobian?  Maybe the Jacobian I have
> been using is not correct - this is the one required for the
> Levenberg-Marquardt optimisation algorithm.  Because the chi-squared
> is squared, its derivative will have a factor of 2 out the front, just
> like the gradient:
>
> http://www.nmr-relax.com/manual/chi_squared_gradient.html
>
> It might be useful to add a Jacobian section to this part of the
> manual with the equations.
>
> Cheers,
>
> Edward
>
>
>
> On 28 August 2014 15:14,  <tlin...@nmr-relax.com> wrote:
>> Author: tlinnet
>> Date: Thu Aug 28 15:14:16 2014
>> New Revision: 25379
>>
>> URL: http://svn.gna.org/viewcvs/relax?rev=25379&view=rev
>> Log:
>> Modified systemtest test Relax_disp.test_estimate_r2eff_err_methods() to 
>> show the difference between using the direct function Jacobian, or the chi2 
>> function Jacobian.
>>
>> Added also the functionality to the estimate R2eff module, to switch between 
>> using the different Jacobians.
>>
>> The results show, that R2eff can be estimated better.
>>
>> ----------------------
>> The results are:
>>
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 431.0.
>> r2eff=8.646/8.646 r2eff_err=0.0348/0.0692 i0=202664.191/202664.191 
>> i0_err=699.6443/712.4201
>>
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 651.2.
>> r2eff=10.377/10.377 r2eff_err=0.0403/0.0810 i0=206049.558/206049.558 
>> i0_err=776.4215/782.1833
>>
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 800.5.
>> r2eff=10.506/10.506 r2eff_err=0.0440/0.0853 i0=202586.332/202586.332 
>> i0_err=763.9678/758.7052
>>
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 984.0.
>> r2eff=10.903/10.903 r2eff_err=0.0476/0.0922 i0=203455.021/203455.021 
>> i0_err=837.8779/828.7280
>>
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 1341.1.
>> r2eff=10.684/10.684 r2eff_err=0.0446/0.0853 i0=218670.412/218670.412 
>> i0_err=850.0210/830.9558
>>
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 1648.5.
>> r2eff=10.501/10.501 r2eff_err=0.0371/0.0742 i0=206502.512/206502.512 
>> i0_err=794.0523/772.9843
>>
>> R1rho at 799.8 MHz, for offset=124.247 ppm and dispersion point 1341.1.
>> r2eff=11.118/11.118 r2eff_err=0.0413/0.0827 i0=216447.241/216447.241 
>> i0_err=784.6562/788.0384
>>
>> R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 800.5.
>> r2eff=7.866/7.866 r2eff_err=0.0347/0.0695 i0=211869.715/211869.715 
>> i0_err=749.2776/763.6930
>>
>> R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 1341.1.
>> r2eff=9.259/9.259 r2eff_err=0.0331/0.0661 i0=217703.151/217703.151 
>> i0_err=682.2137/685.5838
>>
>> R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 1648.5.
>> r2eff=9.565/9.565 r2eff_err=0.0373/0.0745 i0=211988.939/211988.939 
>> i0_err=839.0313/827.0373
>>
>> R1rho at 799.8 MHz, for offset=142.754 ppm and dispersion point 800.5.
>> r2eff=3.240/3.240 r2eff_err=0.0127/0.0253 i0=214417.382/214417.382 
>> i0_err=595.8865/613.4378
>>
>> R1rho at 799.8 MHz, for offset=142.754 ppm and dispersion point 1341.1.
>> r2eff=5.084/5.084 r2eff_err=0.0177/0.0352 i0=226358.691/226358.691 
>> i0_err=660.5314/655.7670
>>
>> R1rho at 799.8 MHz, for offset=179.768 ppm and dispersion point 1341.1.
>> r2eff=2.208/2.208 r2eff_err=0.0091/0.0178 i0=228620.553/228620.553 
>> i0_err=564.8353/560.0873
>>
>> R1rho at 799.8 MHz, for offset=241.459 ppm and dispersion point 1341.1.
>> r2eff=1.711/1.711 r2eff_err=0.0077/0.0155 i0=224087.486/224087.486 
>> i0_err=539.4300/546.4217
>>
>> Fitting with minfx to: 52V @N
>> -----------------------------
>>
>> min_algor='Newton', c_code=True, constraints=False, chi2_jacobian?=False
>> ------------------------------------------------------------------------
>>
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 431.0, with 
>> 4 time points. r2eff=8.646 r2eff_err=0.0692, i0=202664.2, i0_err=712.4201, 
>> chi2=3.758.
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 651.2, with 
>> 5 time points. r2eff=10.377 r2eff_err=0.0810, i0=206049.6, i0_err=782.1833, 
>> chi2=27.291.
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 800.5, with 
>> 5 time points. r2eff=10.506 r2eff_err=0.0853, i0=202586.3, i0_err=758.7052, 
>> chi2=13.357.
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 984.0, with 
>> 5 time points. r2eff=10.903 r2eff_err=0.0922, i0=203455.0, i0_err=828.7280, 
>> chi2=33.632.
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=10.684 r2eff_err=0.0853, i0=218670.4, i0_err=830.9558, 
>> chi2=35.818.
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 1648.5, with 
>> 5 time points. r2eff=10.501 r2eff_err=0.0742, i0=206502.5, i0_err=772.9843, 
>> chi2=7.356.
>> R1rho at 799.8 MHz, for offset=124.247 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=11.118 r2eff_err=0.0827, i0=216447.2, i0_err=788.0384, 
>> chi2=15.587.
>> R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 800.5, with 
>> 5 time points. r2eff=7.866 r2eff_err=0.0695, i0=211869.7, i0_err=763.6930, 
>> chi2=14.585.
>> R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=9.259 r2eff_err=0.0661, i0=217703.2, i0_err=685.5838, 
>> chi2=79.498.
>> R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 1648.5, with 
>> 5 time points. r2eff=9.565 r2eff_err=0.0745, i0=211988.9, i0_err=827.0373, 
>> chi2=0.447.
>> R1rho at 799.8 MHz, for offset=142.754 ppm and dispersion point 800.5, with 
>> 5 time points. r2eff=3.240 r2eff_err=0.0253, i0=214417.4, i0_err=613.4378, 
>> chi2=1.681.
>> R1rho at 799.8 MHz, for offset=142.754 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=5.084 r2eff_err=0.0352, i0=226358.7, i0_err=655.7670, 
>> chi2=23.170.
>> R1rho at 799.8 MHz, for offset=179.768 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=2.208 r2eff_err=0.0178, i0=228620.6, i0_err=560.0873, 
>> chi2=7.794.
>> R1rho at 799.8 MHz, for offset=241.459 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=1.711 r2eff_err=0.0155, i0=224087.5, i0_err=546.4217, 
>> chi2=21.230.
>>
>> Fitting with minfx to: 52V @N
>> -----------------------------
>>
>> min_algor='BFGS', c_code=False, constraints=False, chi2_jacobian?=True
>> ----------------------------------------------------------------------
>>
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 431.0, with 
>> 4 time points. r2eff=8.646 r2eff_err=0.0524, i0=202664.2, i0_err=1239.0827, 
>> chi2=3.758.
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 651.2, with 
>> 5 time points. r2eff=10.377 r2eff_err=0.0228, i0=206049.6, i0_err=178.1907, 
>> chi2=27.291.
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 800.5, with 
>> 5 time points. r2eff=10.506 r2eff_err=0.0345, i0=202586.3, i0_err=705.7630, 
>> chi2=13.357.
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 984.0, with 
>> 5 time points. r2eff=10.903 r2eff_err=0.0206, i0=203455.0, i0_err=186.0857, 
>> chi2=33.632.
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=10.684 r2eff_err=0.0198, i0=218670.4, i0_err=165.0420, 
>> chi2=35.818.
>> R1rho at 799.8 MHz, for offset=118.078 ppm and dispersion point 1648.5, with 
>> 5 time points. r2eff=10.501 r2eff_err=0.0407, i0=206502.5, i0_err=321.3685, 
>> chi2=7.356.
>> R1rho at 799.8 MHz, for offset=124.247 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=11.118 r2eff_err=0.0301, i0=216447.2, i0_err=248.9394, 
>> chi2=15.587.
>> R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 800.5, with 
>> 5 time points. r2eff=7.866 r2eff_err=0.0280, i0=211869.7, i0_err=259.8845, 
>> chi2=14.585.
>> R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=9.259 r2eff_err=0.0108, i0=217703.2, i0_err=88.1514, 
>> chi2=79.498.
>> R1rho at 799.8 MHz, for offset=130.416 ppm and dispersion point 1648.5, with 
>> 5 time points. r2eff=9.565 r2eff_err=0.1630, i0=211988.9, i0_err=2054.6615, 
>> chi2=0.447.
>> R1rho at 799.8 MHz, for offset=142.754 ppm and dispersion point 800.5, with 
>> 5 time points. r2eff=3.240 r2eff_err=0.0485, i0=214417.4, i0_err=611.7573, 
>> chi2=1.681.
>> R1rho at 799.8 MHz, for offset=142.754 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=5.084 r2eff_err=0.0124, i0=226358.7, i0_err=122.7341, 
>> chi2=23.170.
>> R1rho at 799.8 MHz, for offset=179.768 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=2.208 r2eff_err=0.0086, i0=228620.6, i0_err=219.4208, 
>> chi2=7.794.
>> R1rho at 799.8 MHz, for offset=241.459 ppm and dispersion point 1341.1, with 
>> 5 time points. r2eff=1.711 r2eff_err=0.0101, i0=224087.5, i0_err=166.9081, 
>> chi2=21.230.
>>
>> task #7822(https://gna.org/task/index.php?7822): Implement user function to 
>> estimate R2eff and associated errors for exponential curve fitting.
>>
>> Modified:
>>     trunk/specific_analyses/relax_disp/estimate_r2eff.py
>>     trunk/test_suite/system_tests/relax_disp.py
>>
>> Modified: trunk/specific_analyses/relax_disp/estimate_r2eff.py
>> URL: 
>> http://svn.gna.org/viewcvs/relax/trunk/specific_analyses/relax_disp/estimate_r2eff.py?rev=25379&r1=25378&r2=25379&view=diff
>> ==============================================================================
>> --- trunk/specific_analyses/relax_disp/estimate_r2eff.py        (original)
>> +++ trunk/specific_analyses/relax_disp/estimate_r2eff.py        Thu Aug 28 
>> 15:14:16 2014
>> @@ -175,7 +175,7 @@
>>                      print(print_string),
>>
>>
>> -def multifit_covar(J=None, epsrel=0.0, errors=None):
>> +def multifit_covar(J=None, epsrel=0.0, errors=None, use_weights=True):
>>      """This is the implementation of the multifit covariance.
>>
>>      This is inspired from GNU Scientific Library (GSL).
>> @@ -184,9 +184,15 @@
>>
>>      The parameter 'epsrel' is used to remove linear-dependent columns when 
>> J is rank deficient.
>>
>> +    The weighting matrix 'W', is a square symmetric matrix. For independent 
>> measurements, this is a diagonal matrix. Larger values indicate greater 
>> significance.  It is formed by multiplying the supplied errors as 
>> 1./errors^2 with an Identity matrix::
>> +
>> +        W = I.(1/errors^2)
>> +
>> +    If 'use_weights' is set to 'False', the errors are set to 1.0.
>> +
>>      The covariance matrix is given by::
>>
>> -        covar = (J^T J)^{-1} ,
>> +        covar = (J^T.W.J)^{-1} ,
>>
>>      and is computed by QR decomposition of J with column-pivoting. Any 
>> columns of R which satisfy::
>>
>> @@ -224,6 +230,8 @@
>>      @type epsrel:           float
>>      @keyword errors:        The standard deviation of the measured 
>> intensity values per time point.
>>      @type errors:           numpy array
>> +    @keyword use_weights:   If the supplied weights should be used.
>> +    @type use_weights:      bool
>>      @return:                The co-variance matrix
>>      @rtype:                 square numpy array
>>      """
>> @@ -237,6 +245,10 @@
>>      # Now form the error matrix, with errors down the diagonal.
>>      weights = 1. / errors**2
>>
>> +    if use_weights == False:
>> +        weights[:] = 1.0
>> +
>> +    # Form weight matrix.
>>      W = multiply(weights, eye_mat)
>>
>>      # The covariance matrix (sometimes referred to as the 
>> variance-covariance matrix), Qxx, is defined as:
>> @@ -344,7 +356,7 @@
>>          self.factor = factor
>>
>>
>> -    def set_settings_minfx(self, scaling_matrix=None, min_algor='simplex', 
>> c_code=True, constraints=False, func_tol=1e-25, grad_tol=None, 
>> max_iterations=10000000):
>> +    def set_settings_minfx(self, scaling_matrix=None, min_algor='simplex', 
>> c_code=True, constraints=False, chi2_jacobian=False, func_tol=1e-25, 
>> grad_tol=None, max_iterations=10000000):
>>          """Setup options to minfx.
>>
>>          @keyword scaling_matrix:    The square and diagonal scaling matrix.
>> @@ -355,6 +367,8 @@
>>          @type c_code:               bool
>>          @keyword constraints:       If constraints should be used.
>>          @type constraints:          bool
>> +        @keyword chi2_jacobian:     If the chi2 Jacobian should be used.
>> +        @type chi2_jacobian:        bool
>>          @keyword func_tol:          The function tolerance which, when 
>> reached, terminates optimisation.  Setting this to None turns of the check.
>>          @type func_tol:             None or float
>>          @keyword grad_tol:          The gradient tolerance which, when 
>> reached, terminates optimisation.  Setting this to None turns of the check.
>> @@ -366,6 +380,7 @@
>>          # Store variables.
>>          self.scaling_matrix = scaling_matrix
>>          self.c_code = c_code
>> +        self.chi2_jacobian = chi2_jacobian
>>
>>          # Scaling initialisation.
>>          self.scaling_flag = False
>> @@ -561,7 +576,7 @@
>>          return 1. / self.errors * (self.func_exp(self.times, *params) - 
>> self.values)
>>
>>
>> -def estimate_r2eff(method='minfx', min_algor='simplex', c_code=True, 
>> constraints=False, spin_id=None, ftol=1e-15, xtol=1e-15, maxfev=10000000, 
>> factor=100.0, verbosity=1):
>> +def estimate_r2eff(method='minfx', min_algor='simplex', c_code=True, 
>> constraints=False, chi2_jacobian=False, spin_id=None, ftol=1e-15, 
>> xtol=1e-15, maxfev=10000000, factor=100.0, verbosity=1):
>>      """Estimate r2eff and errors by exponential curve fitting with 
>> scipy.optimize.leastsq or minfx.
>>
>>      THIS IS ONLY FOR TESTING.
>> @@ -583,10 +598,12 @@
>>      @type method:               string
>>      @keyword min_algor:         The minimisation algorithm
>>      @type min_algor:            string
>> +    @keyword c_code:            If optimise with C code.
>> +    @type c_code:               bool
>>      @keyword constraints:       If constraints should be used.
>>      @type constraints:          bool
>> -    @keyword c_code:            If optimise with C code.
>> -    @type c_code:               bool
>> +    @keyword chi2_jacobian:     If the chi2 Jacobian should be used.
>> +    @type chi2_jacobian:        bool
>>      @keyword spin_id:           The spin identification string.
>>      @type spin_id:              str
>>      @keyword ftol:              The function tolerance for the relative 
>> error desired in the sum of squares, parsed to leastsq.
>> @@ -661,7 +678,7 @@
>>                  top += 2
>>              subsection(file=sys.stdout, text="Fitting with %s to: 
>> %s"%(method, spin_string), prespace=top)
>>              if method == 'minfx':
>> -                subsection(file=sys.stdout, text="min_algor='%s', 
>> c_code=%s, constraints=%s"%(min_algor, c_code, constraints), prespace=0)
>> +                subsection(file=sys.stdout, text="min_algor='%s', 
>> c_code=%s, constraints=%s, chi2_jacobian?=%s"%(min_algor, c_code, 
>> constraints, chi2_jacobian), prespace=0)
>>
>>          # Loop over each spectrometer frequency and dispersion point.
>>          for exp_type, frq, offset, point, ei, mi, oi, di in 
>> loop_exp_frq_offset_point(return_indices=True):
>> @@ -692,7 +709,7 @@
>>
>>              elif method == 'minfx':
>>                  # Set settings.
>> -                E.set_settings_minfx(min_algor=min_algor, c_code=c_code, 
>> constraints=constraints)
>> +                E.set_settings_minfx(min_algor=min_algor, c_code=c_code, 
>> chi2_jacobian=chi2_jacobian, constraints=constraints)
>>
>>                  # Acquire results.
>>                  results = minimise_minfx(E=E)
>> @@ -737,7 +754,7 @@
>>                  point_info = "%s at %3.1f MHz, for offset=%3.3f ppm and 
>> dispersion point %-5.1f, with %i time points." % (exp_type, frq/1E6, offset, 
>> point, len(times))
>>                  print_strings.append(point_info)
>>
>> -                par_info = "r2eff=%3.3f r2eff_err=%3.3f, i0=%6.1f, 
>> i0_err=%3.3f, chi2=%3.3f.\n" % ( r2eff, r2eff_err, i0, i0_err, chi2)
>> +                par_info = "r2eff=%3.3f r2eff_err=%3.4f, i0=%6.1f, 
>> i0_err=%3.4f, chi2=%3.3f.\n" % ( r2eff, r2eff_err, i0, i0_err, chi2)
>>                  print_strings.append(par_info)
>>
>>                  if E.verbosity >= 2:
>> @@ -912,14 +929,24 @@
>>          #jacobian_matrix_exp2 = E.jacobian_matrix_exp
>>          #print jacobian_matrix_exp - jacobian_matrix_exp2
>>      else:
>> -        # Call class, to store value.
>> -        E.func_exp_grad(param_vector)
>> -        jacobian_matrix_exp = E.jacobian_matrix_exp
>> -        #E.func_exp_chi2_grad(param_vector)
>> -        #jacobian_matrix_exp = E.jacobian_matrix_exp_chi2
>> +        if E.chi2_jacobian:
>> +            # Call class, to store value.
>> +            E.func_exp_chi2_grad(param_vector)
>> +            jacobian_matrix_exp = E.jacobian_matrix_exp_chi2
>> +        else:
>> +            # Call class, to store value.
>> +            E.func_exp_grad(param_vector)
>> +            jacobian_matrix_exp = E.jacobian_matrix_exp
>> +            #E.func_exp_chi2_grad(param_vector)
>> +            #jacobian_matrix_exp = E.jacobian_matrix_exp_chi2
>>
>>      # Get the co-variance
>> -    pcov = multifit_covar(J=jacobian_matrix_exp, errors=E.errors)
>> +    if E.chi2_jacobian:
>> +        use_weights = False
>> +    else:
>> +        use_weights = True
>> +
>> +    pcov = multifit_covar(J=jacobian_matrix_exp, errors=E.errors, 
>> use_weights=use_weights)
>>
>>      # To compute one standard deviation errors on the parameters, take the 
>> square root of the diagonal covariance.
>>      param_vector_error = sqrt(diag(pcov))
>>
>> Modified: trunk/test_suite/system_tests/relax_disp.py
>> URL: 
>> http://svn.gna.org/viewcvs/relax/trunk/test_suite/system_tests/relax_disp.py?rev=25379&r1=25378&r2=25379&view=diff
>> ==============================================================================
>> --- trunk/test_suite/system_tests/relax_disp.py (original)
>> +++ trunk/test_suite/system_tests/relax_disp.py Thu Aug 28 15:14:16 2014
>> @@ -2946,12 +2946,13 @@
>>
>>
>>          # Now do it manually.
>> -        estimate_r2eff(method='scipy.optimize.leastsq')
>> -        estimate_r2eff(method='minfx', min_algor='simplex', c_code=True, 
>> constraints=False)
>> -        estimate_r2eff(method='minfx', min_algor='simplex', c_code=False, 
>> constraints=False)
>> -        estimate_r2eff(method='minfx', min_algor='BFGS', c_code=True, 
>> constraints=False)
>> -        estimate_r2eff(method='minfx', min_algor='BFGS', c_code=False, 
>> constraints=False)
>> +        #estimate_r2eff(method='scipy.optimize.leastsq')
>> +        #estimate_r2eff(method='minfx', min_algor='simplex', c_code=True, 
>> constraints=False)
>> +        #estimate_r2eff(method='minfx', min_algor='simplex', c_code=False, 
>> constraints=False)
>> +        #estimate_r2eff(method='minfx', min_algor='BFGS', c_code=True, 
>> constraints=False)
>> +        #estimate_r2eff(method='minfx', min_algor='BFGS', c_code=False, 
>> constraints=False)
>>          estimate_r2eff(method='minfx', min_algor='Newton', c_code=True, 
>> constraints=False)
>> +        estimate_r2eff(method='minfx', min_algor='BFGS', c_code=False, 
>> constraints=False, chi2_jacobian=True)
>>
>>
>>      def test_exp_fit(self):
>>
>>
>> _______________________________________________
>> relax (http://www.nmr-relax.com)
>>
>> This is the relax-commits mailing list
>> relax-comm...@gna.org
>>
>> To unsubscribe from this list, get a password
>> reminder, or change your subscription options,
>> visit the list information page at
>> https://mail.gna.org/listinfo/relax-commits
>
> _______________________________________________
> relax (http://www.nmr-relax.com)
>
> This is the relax-devel mailing list
> relax-devel@gna.org
>
> To unsubscribe from this list, get a password
> reminder, or change your subscription options,
> visit the list information page at
> https://mail.gna.org/listinfo/relax-devel

_______________________________________________
relax (http://www.nmr-relax.com)

This is the relax-devel mailing list
relax-devel@gna.org

To unsubscribe from this list, get a password
reminder, or change your subscription options,
visit the list information page at
https://mail.gna.org/listinfo/relax-devel

Reply via email to