HyukjinKwon commented on a change in pull request #28025: 
[SPARK-31186][PySpark][SQL] toPandas should not fail on duplicate column names
URL: https://github.com/apache/spark/pull/28025#discussion_r398269294
 
 

 ##########
 File path: python/pyspark/sql/pandas/conversion.py
 ##########
 @@ -132,25 +132,36 @@ def toPandas(self):
         # Below is toPandas without Arrow optimization.
         pdf = pd.DataFrame.from_records(self.collect(), columns=self.columns)
 
-        dtype = {}
-        for field in self.schema:
+        dtype = [None] * len(self.schema)
+        for fieldIdx in range(len(self.schema)):
+            field = self.schema[fieldIdx]
+            pandas_col = pdf.iloc[:, fieldIdx]
+
             pandas_type = 
PandasConversionMixin._to_corrected_pandas_type(field.dataType)
             # SPARK-21766: if an integer field is nullable and has null 
values, it can be
             # inferred by pandas as float column. Once we convert the column 
with NaN back
             # to integer type e.g., np.int16, we will hit exception. So we use 
the inferred
             # float type, not the corrected type from the schema in this case.
             if pandas_type is not None and \
                 not(isinstance(field.dataType, IntegralType) and 
field.nullable and
-                    pdf[field.name].isnull().any()):
-                dtype[field.name] = pandas_type
+                    pandas_col.isnull().any()):
+                dtype[fieldIdx] = pandas_type
             # Ensure we fall back to nullable numpy types, even when whole 
column is null:
-            if isinstance(field.dataType, IntegralType) and 
pdf[field.name].isnull().any():
-                dtype[field.name] = np.float64
-            if isinstance(field.dataType, BooleanType) and 
pdf[field.name].isnull().any():
-                dtype[field.name] = np.object
+            if isinstance(field.dataType, IntegralType) and 
pandas_col.isnull().any():
+                dtype[fieldIdx] = np.float64
+            if isinstance(field.dataType, BooleanType) and 
pandas_col.isnull().any():
+                dtype[fieldIdx] = np.object
+
+        df = pd.DataFrame()
+        for index in range(len(dtype)):
+            t = dtype[index]
 
 Review comment:
   nit: I think we can do:
   
   ```diff
   -        for index in range(len(dtype)):
   -            t = dtype[index]
   +        for index, t in enumerate(dtype):
   ```

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
us...@infra.apache.org


With regards,
Apache Git Services

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to