zhengruifeng commented on code in PR #38060:
URL: https://github.com/apache/spark/pull/38060#discussion_r984385984
##########
python/pyspark/pandas/groupby.py:
##########
@@ -806,28 +806,92 @@ def std(col: Column) -> Column:
bool_to_numeric=True,
)
- def sum(self) -> FrameLike:
+ def sum(self, numeric_only: Optional[bool] = True, min_count: int = 0) ->
FrameLike:
"""
Compute sum of group values
+ .. versionadded:: 3.3.0
+
+ Parameters
+ ----------
+ numeric_only : bool, default False
+ Include only float, int, boolean columns. If None, will attempt to
use
+ everything, then use only numeric data.
+ It takes no effect since only numeric columns can be support here.
+
+ .. versionadded:: 3.4.0
+ min_count: int, default 0
+ The required number of valid values to perform the operation.
+ If fewer than min_count non-NA values are present the result will
be NA.
+
+ .. versionadded:: 3.4.0
+
Examples
--------
>>> df = ps.DataFrame({"A": [1, 2, 1, 2], "B": [True, False, False,
True],
- ... "C": [3, 4, 3, 4], "D": ["a", "b", "b", "a"]})
+ ... "C": [3, 4, 3, 4], "D": ["a", "a", "b", "a"]})
- >>> df.groupby("A").sum()
+ >>> df.groupby("A").sum().sort_index()
B C
A
1 1 6
2 1 8
+ >>> df.groupby("D").sum().sort_index()
+ A B C
+ D
+ a 5 2 11
+ b 1 0 3
+
+ >>> df.groupby("D").sum(min_count=3).sort_index()
+ A B C
+ D
+ a 5.0 2.0 11.0
+ b NaN NaN NaN
+
+ Notes
+ -----
+ There is a behavior difference between pandas-on-Spark and pandas:
+
+ * when there is a non-numeric aggregation column, it will be ignored
+ even if `numeric_only` is False.
+
See Also
--------
pyspark.pandas.Series.groupby
pyspark.pandas.DataFrame.groupby
"""
+ if numeric_only is not None and not isinstance(numeric_only, bool):
+ raise TypeError("numeric_only must be None or bool")
+ if not isinstance(min_count, int):
+ raise TypeError("min_count must be integer")
+
+ if numeric_only is not None and not numeric_only:
+ unsupported = [
Review Comment:
given a non-numeric column, for example, `str` type, the final result is
sensitive to the order, so not easy to implement for now.
Right now, warn the users that such columns will be skiped:
`PandasAPIOnSparkAdviceWarning: GroupBy.sum() can only support numeric and
bool columns even ifnumeric_only=False, skip unsupported columns: ['D']`
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]