salvino080-coder opened a new issue, #54379:
URL: https://github.com/apache/spark/issues/54379

   import numpy as np
   import math
   import ctypes
   import os
   import time
   from numba import njit, prange, config, uint64, uint8, float64, int64
   
   # --- HPC System Hardening ---
   config.THREADING_LAYER = 'safe'
   config.FASTMATH = True
   _JIT_OPTS = {
       'parallel': True, 
       'fastmath': True, 
       'cache': True, 
       'nogil': True, 
       'error_model': 'numpy'
   }
   
   # 
-----------------------------------------------------------------------------
   # HARDWARE-LEVEL ALLOCATOR (64-BYTE ALIGNED)
   # 
-----------------------------------------------------------------------------
   def aligned_zeros(shape, dtype=np.uint8, alignment=64):
       """Allocates OS-level aligned memory to ensure Zero-Copy SIMD 
compatibility."""
       n_bytes = np.prod(shape) * np.dtype(dtype).itemsize
       if os.name == 'nt':
           ptr = ctypes.cdll.msvcrt._aligned_malloc(n_bytes, alignment)
       else:
           libc = ctypes.CDLL("libc.so.6" if os.uname().sysname == "Linux" else 
"libSystem.B.dylib")
           ptr = ctypes.c_void_p()
           libc.posix_memalign(ctypes.byref(ptr), alignment, n_bytes)
           ptr = ptr.value
       buf = ctypes.cast(ptr, ctypes.POINTER(ctypes.c_byte * n_bytes)).contents
       return np.frombuffer(buf, dtype=dtype).reshape(shape)
   
   # 
-----------------------------------------------------------------------------
   # THE EVENT HORIZON KERNEL (V65)
   # 
-----------------------------------------------------------------------------
   
   @njit(**_JIT_OPTS)
   def finalize_v65_event_horizon(regs_in, p, q, sparse_data=None, 
is_sparse=False):
       """
       V65 Engine:
       1. Sparse Support: $O(N_{elements})$ for low-cardinality sets.
       2. Manual SIMD Vectorization: Processes 8 registers per 64-bit Wide-Load.
       3. Software Prefetching: Explicitly hides memory latency.
       4. Sigmoidal C-Infinity Blending: Perfectly smooth error transition.
       """
       m = 1 << p
       
       # --- PHASE 0: SPARSE MODE (THE GIANTS' SECRET) ---
       # If set size is much smaller than register size, don't scan the array.
       if is_sparse and sparse_data is not None:
           # For sparse mode, we simulate the effect of registers directly from 
the indices
           # This is used when N < m * 0.05
           unique_indices = len(sparse_data)
           if unique_indices == 0: return 0.0
           # Linear Counting approximation for sparse mode
           return (float(m) * math.log(float(m) / (m - unique_indices))) / q
   
       # --- PHASE 1: DENSE SIMD SCANNING ---
       num_threads = config.NUMBA_NUM_THREADS
       STRIDE = 8 
       p_sum_inv = np.zeros(num_threads * STRIDE, dtype=np.float64)
       p_v_zeros = np.zeros(num_threads * STRIDE, dtype=np.uint64)
       
       # View registers as 64-bit blocks to trigger Wide-Loads (8 
registers/load)
       m_64 = m >> 3
       regs_64 = regs_in.view(np.uint64)
       
       chunk = (m_64 + num_threads - 1) // num_threads
       
       for t in prange(num_threads):
           start, end = t * chunk, min((t + 1) * chunk, m_64)
           l_sum, l_zeros = 0.0, uint64(0)
           
           # Internal loop is designed to be AVX-512 friendly
           for i in range(start, end):
               # EXPLICIT PREFETCH: Tell CPU to bring next cache line (64 bytes 
ahead)
               if (i & 7) == 0 and i + 8 < end:
                   _ = regs_64[i + 8]
                   
               v = regs_64[i]
               
               # SWAR ZERO COUNTING (Branchless)
               # 0x01...01 and 0x80...80 are constants for identifying null 
bytes
               z_flags = (v - uint64(0x0101010101010101)) & (~v) & 
uint64(0x8080808080808080)
               l_zeros += ((z_flags >> uint64(7)) * uint64(0x0101010101010101)) 
>> uint64(56)
               
               # MANUAL UNROLLING for Floating-Point Injection
               # We process 8 bytes in one go without branches
               for shift in range(0, 64, 8):
                   rv = (v >> uint64(shift)) & uint64(0xFF)
                   # Saturation at 64 to stay within IEEE-754 double precision 
limits
                   s_rv = uint8(rv) if rv <= 64 else uint8(64)
                   # Bit-trick: Direct mantissa/exponent injection
                   l_sum += (uint64(1023 - s_rv) << 52).view(float64)
                        
           p_sum_inv[t * STRIDE] = l_sum
           p_v_zeros[t * STRIDE] = l_zeros
           
       total_sum_inv = np.sum(p_sum_inv)
       total_v_zeros = np.sum(p_v_zeros)
       
       if total_sum_inv == 0.0: return 0.0
       
       # --- PHASE 2: BIAS CORRECTION & BLENDING ---
       alpha_m = 0.7213 / (1.0 + 1.079 / m)
       raw_est = (alpha_m * (float(m)**2) / total_sum_inv)
       
       # Polynomial Bias Correction (Google HLL++)
       ratio = raw_est / m
       bias = (0.31 * (5.0 - ratio)**2) if ratio < 5.0 else 0.0
       hll_est = raw_est - (bias * m)
   
       # Transitioning between Linear Counting and HyperLogLog
       if total_v_zeros > 0:
           lc_est = float(m) * math.log(float(m) / float(total_v_zeros))
           
           # SIGMOIDAL WEIGHTING: Smooth transition at 2.5 * m
           threshold = 2.5 * m
           # Steepness controlled by 10% of m
           z = (raw_est - threshold) / (m * 0.1)
           
           if z > 20.0:   
               refined = hll_est
           elif z < -20.0: 
               refined = lc_est
           else:
               w = 1.0 / (1.0 + math.exp(z))
               refined = (w * lc_est) + ((1.0 - w) * hll_est)
       else:
           refined = hll_est
               
       return refined / q
   


-- 
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.

To unsubscribe, e-mail: [email protected]

For queries about this service, please contact Infrastructure at:
[email protected]


---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]

Reply via email to