Github user vanzin commented on a diff in the pull request:

    https://github.com/apache/spark/pull/20997#discussion_r180172763
  
    --- Diff: 
external/kafka-0-10/src/main/scala/org/apache/spark/streaming/kafka010/KafkaDataConsumer.scala
 ---
    @@ -0,0 +1,381 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one or more
    + * contributor license agreements.  See the NOTICE file distributed with
    + * this work for additional information regarding copyright ownership.
    + * The ASF licenses this file to You under the Apache License, Version 2.0
    + * (the "License"); you may not use this file except in compliance with
    + * the License.  You may obtain a copy of the License at
    + *
    + *    http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +
    +package org.apache.spark.streaming.kafka010
    +
    +import java.{util => ju}
    +
    +import scala.collection.JavaConverters._
    +
    +import org.apache.kafka.clients.consumer.{ConsumerConfig, ConsumerRecord, 
KafkaConsumer}
    +import org.apache.kafka.common.{KafkaException, TopicPartition}
    +
    +import org.apache.spark.TaskContext
    +import org.apache.spark.internal.Logging
    +
    +private[kafka010] sealed trait KafkaDataConsumer[K, V] {
    +  /**
    +   * Get the record for the given offset if available.
    +   *
    +   * @param offset         the offset to fetch.
    +   * @param pollTimeoutMs  timeout in milliseconds to poll data from Kafka.
    +   */
    +  def get(offset: Long, pollTimeoutMs: Long): ConsumerRecord[K, V] = {
    +    internalConsumer.get(offset, pollTimeoutMs)
    +  }
    +
    +  /**
    +   * Start a batch on a compacted topic
    +   *
    +   * @param offset         the offset to fetch.
    +   * @param pollTimeoutMs  timeout in milliseconds to poll data from Kafka.
    +   */
    +  def compactedStart(offset: Long, pollTimeoutMs: Long): Unit = {
    +    internalConsumer.compactedStart(offset, pollTimeoutMs)
    +  }
    +
    +  /**
    +   * Get the next record in the batch from a compacted topic.
    +   * Assumes compactedStart has been called first, and ignores gaps.
    +   *
    +   * @param pollTimeoutMs  timeout in milliseconds to poll data from Kafka.
    +   */
    +  def compactedNext(pollTimeoutMs: Long): ConsumerRecord[K, V] = {
    +    internalConsumer.compactedNext(pollTimeoutMs)
    +  }
    +
    +  /**
    +   * Rewind to previous record in the batch from a compacted topic.
    +   *
    +   * @throws NoSuchElementException if no previous element
    +   */
    +  def compactedPrevious(): ConsumerRecord[K, V] = {
    +    internalConsumer.compactedPrevious()
    +  }
    +
    +  /**
    +   * Release this consumer from being further used. Depending on its 
implementation,
    +   * this consumer will be either finalized, or reset for reuse later.
    +   */
    +  def release(): Unit
    +
    +  /** Reference to the internal implementation that this wrapper delegates 
to */
    +  protected def internalConsumer: InternalKafkaConsumer[K, V]
    +}
    +
    +
    +/**
    + * A wrapper around Kafka's KafkaConsumer.
    + * This is not for direct use outside this file.
    + */
    +private[kafka010]
    +class InternalKafkaConsumer[K, V](
    +  val groupId: String,
    +  val topicPartition: TopicPartition,
    +  val kafkaParams: ju.Map[String, Object]) extends Logging {
    +
    +  require(groupId == kafkaParams.get(ConsumerConfig.GROUP_ID_CONFIG),
    --- End diff --
    
    Given this, is there any advantage in passing the group ID as a parameter?


---

---------------------------------------------------------------------
To unsubscribe, e-mail: reviews-unsubscr...@spark.apache.org
For additional commands, e-mail: reviews-h...@spark.apache.org

Reply via email to