Hi John,

Actually, I used rpy classic in my program. I wonder whether it is possible
to introduce the results of ks package for rpy2 and then I distinguish my
result or not?? Since rpy classic has problem with the index of lists and
'$' , therefore I think it would be practical but I do not know how I could
do this exchange. I do not know rpy2 enough to solve my problem and I am not
sure that it is plausible for this problem or not??

On Thu, Feb 11, 2010 at 3:18 PM, John A Schroeder <john.schroe...@inl.gov>wrote:

>
> Hi Zahra,
>
> I have been struggling with the same issues.   How you do it apparently
> depends on the version of RPy.   I am currently using 2.0.8 on my windows
> machine and the latest 2.1alpha on my linux machine.  Of course they are
> very different , and very different from the v1 code shown in the most
> helpful examples on the RPy web site.
>
> The following is some code I am working on that illustrates some
> possibilities.  It is derived from the "faithful" demo on the RPy web site.
>  This works in 2.0.8 .  To see the structure of the object I am trying to
> access I typically have to print it first (diagnostic prints are commented
> out).  Then I try to work out the access details.  The answer to your
> problem is most likely in the shapiro_test or ks_test output below.   I am
> still looking for the best way myself, so I am posting this code with the
> hope that more experienced users might offer improvements.  I do have this
> same code working for version 2.1alpha, but can't easily reconstruct it from
> memory.
>
>     # Use RPy for processing simulation results
>
>     # Arrange access to some of the required R objects/functions
>     r = robjects.r
>     dev_off = robjects.r('dev.off')
>     shapiro_test = robjects.r('shapiro.test')
>     ks_test = robjects.r('ks.test')
>
>     # Read the unavailability (UA) data into an R vector
>
>     uaData = r.scan("uaData.txt")
>
>     # Print mean and std. dev. of UA data.
>     print "RESULTS SUMMARY -- USING R\n"
>     print "  uaData observatons = %7.3E" % (r.length(uaData)[0])
>     print "  uaData mean        = %7.3E" % (r.mean(uaData)[0])
>     print "  uaData std dev     = %7.3E" % (r.sd(uaData)[0])
>     print " "
>
>     # Print some distribution statistics provided by R summary()
>     sumr = r.summary(uaData)
>     print "  Output from R summary() "
>     #print sumr
>     print "    Min     = %7.3E" %(sumr[0])
>     print "    1st Qu  = %7.3E" %(sumr[1])
>     print "    Median  = %7.3E" %(sumr[2])
>     print "    Mean    = %7.3E" %(sumr[3])
>     print "    3rd Qu  = %7.3E" %(sumr[4])
>     print "    Max     = %7.3E" %(sumr[5])
>     print " "
>
>     # Print a stem-and-leaf plot provided by R stem()
>     #print "Stem-and-leaf plot of unavailability data"
>     #print r.stem(uaData)
>
>     # Plot histogram of the UA data.  Show normal curve with same mean,
> std. dev.
>     r.X11()
>     #r.png('uaHistogram.png',width=733,height=550)
>     r.par(ann=0)                        # disables automatic label
> annotations
>     r.hist(uaData,breaks=25, prob=1,
>                main="Unavailability Data Histogram",xlab="Unavailability")
>     #r.plot(h.counts, verticals=1, log="x",
>     #       main="Unavailability data")
>     x = r.seq(0.00001, .1, length=100)
>     r.lines(x, r.dnorm(x, mean=r.mean(uaData), sd=r.sqrt(r.var(uaData))),
> lty=3, col="red")
>     #dev_off()
>
>     # Plot cumulative distribution of UA data. Show normal curve with same
>     # mean, std. dev.
>     #r.X11()
>     r.png('uaECDF.png',width=733,height=550)
>     r.library('stats')
>     r.plot(r.ecdf(uaData), verticals=1,
>            main="Empirical cumulative distribution function of
> unavailability data")
>     x = r.seq(.001,.1,length=100)
>     r.lines(x,r.pnorm(x,mean=r.mean(uaData),
>             sd=r.sqrt(r.var(uaData))), lty=3, lwd=2, col="red")
>     dev_off()
>
>     # Plot Q-Q curve
>     #r.X11()
>     r.png('ua_Q-Q.png',width=733,height=550)
>     r.par(pty="s")
>     r.qqnorm(uaData,col="blue")
>     r.qqline(uaData,col="red")
>     dev_off()
>
>     # Run the Shapiro-Wilks normality test.
>     sw = shapiro_test(uaData)
>     print "  Shapiro-Wilks normality test of the UA data"
>     #print sw
>     print "    W       = %.4f" % sw.r["statistic"][0][0]
>     print "    p-value = %.4E" % sw.r["p.value"][0][0]
>     print " "
>
>     # Run the Kolmogorov-Smirnov test.
>     ks = ks_test(uaData,"pnorm", mean=r.mean(uaData),
> sd=r.sqrt(r.var(uaData)))
>     print "  One-sample Kolmogorov-Smirnov test of the UA data"
>     #print ks
>     print "    D       = %.4f" % ks.r['statistic'][0][0]
>     print "    p-value = %.4f" % ks.r['p.value'][0][0]
>     print "    Alternative hypothesis: %s" % ks.r['alternative'][0][0]
>     print " "
>
>
>
> John A. Schroeder
> Idaho National Laboratory
> Battelle Energy Alliance, LLC
> P.O. Box 1625
> Idaho Falls, ID  83415-3850
>
> Ph:   208-526-8755
> FAX:  208-526-2930
>
>
>  *zahra sheikhbahaee <sheikhbah...@gmail.com>*
>
> 02/11/2010 04:58 AM
>  Please respond to
> "RPy help,        support and design discussion list" <
> rpy-list@lists.sourceforge.net>
>
>   To
> rpy-list@lists.sourceforge.net
> cc
>   Subject
> Re: [Rpy] Rpy problem
>
>
>
>
> Hi all,
>
> I tried the method that one of you proposed for attributing components on a
> list but the problem is that when I want to devote eval.points which is a
> list and contains two components. It could only devote the first component
> and actually it could not recognize the second one.
> >>>list_names = [name for name in r.names(j)]
>
> >>> value= j[list_names.index('eval.points')]
> >>> r.print_(value)
> $eval.points
> $eval.points[[1]]
>  [1] -2.89805909 -2.77157575 -2.64509241 -2.51860907 -2.39212573
> -2.26564239
>  [7] -2.13915905 -2.01267571 -1.88619237 -1.75970903 -1.63322569
> -1.50674235
> [13] -1.38025901 -1.25377567 -1.12729233 -1.00080899 -0.87432565
> -0.74784231
> [19] -0.62135897 -0.49487563 -0.36839229 -0.24190895 -0.11542561
> 0.01105773
> [25]  0.13754107  0.26402441  0.39050775  0.51699108  0.64347442
> 0.76995776
> [31]  0.89644110  1.02292444  1.14940778  1.27589112  1.40237446
> 1.52885780
> [37]  1.65534114  1.78182448  1.90830782  2.03479116  2.16127450
> 2.28775784
> [43]  2.41424118  2.54072452  2.66720786  2.79369120  2.92017454
> 3.04665788
> [49]  3.17314122  3.29962456
>
>
> {'eval.points': {'': [-2.8980590912448885, -2.771575751386762,
> -2.6450924115286356, -2.5186090716705092, -2.3921257318123832,
> -2.2656423919542568, -2.1391590520961303, -2.0126757122380039,
> -1.8861923723798777, -1.7597090325217513, -1.6332256926636251,
> -1.5067423528054986, -1.3802590129473722, -1.253775673089246,
> -1.1272923332311195, -1.0008089933729933, -0.87432565351486691,
> -0.74784231365674048, -0.62135897379861404, -0.49487563394048806,
> -0.36839229408236163, -0.2419089542242352, -0.11542561436610876,
> 0.011057725492017667, 0.1375410653501441, 0.26402440520827009,
> 0.39050774506639652, 0.51699108492452295, 0.64347442478264938,
> 0.76995776464077581, 0.8964411044989018, 1.0229244443570282,
> 1.1494077842151547, 1.2758911240732806, 1.4023744639314075,
> 1.5288578037895335, 1.6553411436476604, 1.7818244835057864,
> 1.9083078233639124, 2.0347911632220392, 2.1612745030801652,
> 2.2877578429382921, 2.4142411827964181, 2.5407245226545441,
> 2.6672078625126709, 2.7936912023707969, 2.9201745422289238,
> 3.0466578820870498, 3.1731412219451767, 3.2996245618033027]}}
> >>> r.mode(value)
> 'list'
> >>> r.length(value)
> 1
>
> It is very urgent. Could someone help me?
>
> Zahra.
>
> On Wed, Feb 10, 2010 at 11:58 AM, zahra sheikhbahaee <*
> sheikhbah...@gmail.com* <sheikhbah...@gmail.com>> wrote:
> Hi,
>
> I have written a program in python and then I used the ks(kernel density
> estimator)package of R for smoothing my dataset. Now, I need to extract the
> information which has been calculated by the package. The result is somthing
> like that:
> r.str(j)
> List of 4
>  $ x          : num [1:3105, 1:2] 0.952 0.891 0.902 0.889 0.864 ...
>  $ eval.points:List of 2
>   ..$ : num [1:50] -2.84 -2.72 -2.59 -2.47 -2.35 ...
>   ..$ : num [1:50] -2.9 -2.77 -2.65 -2.52 -2.39 ...
>  $ estimate   : num [1:50, 1:50] 0 0 0 0 0 ...
>  $ H          : num [1:2, 1:2] 0.00751 0.00452 0.00452 0.00802
>  - attr(*, "class")= chr "kde"
> For analysing the results I need eval.points, which give me the points in
> two dimension and they have list format but I do not know how I could
> attribute these two components to two python components.
>
> How could I tackle with this problem?
>
> Cheers,
> Zahra.
>
> ------------------------------------------------------------------------------
> SOLARIS 10 is the OS for Data Centers - provides features such as DTrace,
> Predictive Self Healing and Award Winning ZFS. Get Solaris 10 NOW
>
> http://p.sf.net/sfu/solaris-dev2dev_______________________________________________
> rpy-list mailing list
> rpy-list@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/rpy-list
>
>
>
> ------------------------------------------------------------------------------
> SOLARIS 10 is the OS for Data Centers - provides features such as DTrace,
> Predictive Self Healing and Award Winning ZFS. Get Solaris 10 NOW
> http://p.sf.net/sfu/solaris-dev2dev
> _______________________________________________
> rpy-list mailing list
> rpy-list@lists.sourceforge.net
> https://lists.sourceforge.net/lists/listinfo/rpy-list
>
>
------------------------------------------------------------------------------
SOLARIS 10 is the OS for Data Centers - provides features such as DTrace,
Predictive Self Healing and Award Winning ZFS. Get Solaris 10 NOW
http://p.sf.net/sfu/solaris-dev2dev
_______________________________________________
rpy-list mailing list
rpy-list@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/rpy-list

Reply via email to