Hi all and thanks Jan for your help, I send a new version of the kernel Oops which correspond to the driver version, and it should be more readable in a file than in the message's content.
Regards, WALLOIS Cyril
/* * Davicom DM9000 Fast Ethernet driver for Linux. * Copyright (C) 1997 Sten Wang * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * (C) Copyright 1997-1998 DAVICOM Semiconductor,Inc. All Rights Reserved. * * Additional updates, Copyright: * Ben Dooks <b...@simtec.co.uk> * Sascha Hauer <s.ha...@pengutronix.de> */ #include <linux/module.h> #include <linux/ioport.h> #include <linux/netdevice.h> #include <linux/etherdevice.h> #include <linux/init.h> #include <linux/skbuff.h> #include <linux/spinlock.h> #include <linux/crc32.h> #include <linux/mii.h> #include <linux/ethtool.h> #include "rt_dm9000.h" #include <linux/rtnetlink.h>/*add experimental*/ #include <linux/delay.h> #include <linux/platform_device.h> #include <linux/irq.h> #include <asm/delay.h> #include <asm/irq.h> #include <asm/io.h> /* *** RTnet *** */ #include <rtnet_port.h> #define RX_RING_SIZE 8 #define MAX_UNITS 8 #define DEFAULT_RX_POOL_SIZE 16 static int cards[MAX_UNITS] = { [0 ... (MAX_UNITS-1)] = 1 }; static unsigned int rx_pool_size = DEFAULT_RX_POOL_SIZE; compat_module_int_param_array(cards, MAX_UNITS); /* Board/System/Debug information/definition ---------------- */ #define DM9000_PHY 0x40 /* PHY address 0x01 */ #define CARDNAME "dm9000" #define DRV_VERSION "0.2" #define HEADER_LENGTH 14 /* * Transmit timeout, default 5 seconds. */ static int flag = 0; static int watchdog = 5000; module_param(watchdog, int, 0400); MODULE_PARM_DESC(watchdog, "transmit timeout in milliseconds"); /* DM9000 register address locking. * * The DM9000 uses an address register to control where data written * to the data register goes. This means that the address register * must be preserved over interrupts or similar calls. * * During interrupt and other critical calls, a spinlock is used to * protect the system, but the calls themselves save the address * in the address register in case they are interrupting another * access to the device. * * For general accesses a lock is provided so that calls which are * allowed to sleep are serialised so that the address register does * not need to be saved. This lock also serves to serialise access * to the EEPROM and PHY access registers which are shared between * these two devices. */ /* The driver supports the original DM9000E, and now the two newer * devices, DM9000A and DM9000B. */ enum dm9000_type { TYPE_DM9000E, /* original DM9000 */ TYPE_DM9000A, TYPE_DM9000B }; /* Structure/enum declaration ------------------------------- */ typedef struct board_info { void __iomem *io_addr; /* Register I/O base address */ void __iomem *io_data; /* Data I/O address */ u16 irq; /* IRQ */ u16 tx_pkt_cnt; u16 queue_pkt_len; u16 queue_start_addr; u16 dbug_cnt; u8 io_mode; /* 0:word, 2:byte */ u8 phy_addr; u8 imr_all; unsigned int flags; unsigned int in_suspend :1; int debug_level; enum dm9000_type type; void (*inblk)(void __iomem *port, void *data, int length); void (*outblk)(void __iomem *port, void *data, int length); void (*dumpblk)(void __iomem *port, int length); struct device *dev; /* parent device */ struct resource *addr_res; /* resources found */ struct resource *data_res; struct resource *addr_req; /* resources requested */ struct resource *data_req; struct resource *irq_res; struct mutex addr_lock; /* phy and eeprom access lock */ struct delayed_work phy_poll; struct rtnet_device *ndev; struct rtskb *skb; /* holds skb until xmit interrupt completes */ int skb_length; // spinlock_t lock; rtdm_lock_t lock; struct mii_if_info mii; /* ethtool support */ u32 msg_enable; /*experimental add */ /* RT Net */ struct net_device_stats stats; rtdm_irq_t irq_handle; rtdm_irq_t phy_irq_handle; struct rtskb_queue skb_pool; } board_info_t; static inline board_info_t *to_dm9000_board(struct rtnet_device *dev) { return dev->priv; } /* DM9000 network board routine ---------------------------- */ static void dm9000_reset(board_info_t * db) { rtdm_printk("resetting device\n"); /* RESET device */ writeb(DM9000_NCR, db->io_addr); udelay(200); writeb(NCR_RST, db->io_data); udelay(200); } /* * Read a byte from I/O port */ static u8 ior(board_info_t * db, int reg) { writeb(reg, db->io_addr); return readb(db->io_data); } /* * Write a byte to I/O port */ static void iow(board_info_t * db, int reg, int value) { writeb(reg, db->io_addr); writeb(value, db->io_data); } /* routines for sending block to chip */ static void dm9000_outblk_8bit(void __iomem *reg, void *data, int count) { writesb(reg, data, count); } static void dm9000_outblk_16bit(void __iomem *reg, void *data, int count) { writesw(reg, data, (count+1) >> 1); } static void dm9000_outblk_32bit(void __iomem *reg, void *data, int count) { writesl(reg, data, (count+3) >> 2); } /* input block from chip to memory */ static void dm9000_inblk_8bit(void __iomem *reg, void *data, int count) { readsb(reg, data, count); } static void dm9000_inblk_16bit(void __iomem *reg, void *data, int count) { readsw(reg, data, (count+1) >> 1); } static void dm9000_inblk_32bit(void __iomem *reg, void *data, int count) { readsl(reg, data, (count+3) >> 2); } /* dump block from chip to null */ static void dm9000_dumpblk_8bit(void __iomem *reg, int count) { int i; int tmp; for (i = 0; i < count; i++) tmp = readb(reg); } static void dm9000_dumpblk_16bit(void __iomem *reg, int count) { int i; int tmp; count = (count + 1) >> 1; for (i = 0; i < count; i++) tmp = readw(reg); } static void dm9000_dumpblk_32bit(void __iomem *reg, int count) { int i; int tmp; count = (count + 3) >> 2; for (i = 0; i < count; i++) tmp = readl(reg); } /* dm9000_set_io * * select the specified set of io routines to use with the * device */ static void dm9000_set_io(struct board_info *db, int byte_width) { /* use the size of the data resource to work out what IO * routines we want to use */ rtdm_printk("set io..."); switch (byte_width) { case 1: db->dumpblk = dm9000_dumpblk_8bit; db->outblk = dm9000_outblk_8bit; db->inblk = dm9000_inblk_8bit; break; case 3: rtdm_printk("3 byte IO, falling back to 16bit\n"); case 2: db->dumpblk = dm9000_dumpblk_16bit; db->outblk = dm9000_outblk_16bit; db->inblk = dm9000_inblk_16bit; break; case 4: default: db->dumpblk = dm9000_dumpblk_32bit; db->outblk = dm9000_outblk_32bit; db->inblk = dm9000_inblk_32bit; break; } rtdm_printk("byte_width : %i ok\n",byte_width); } /* static void dm9000_schedule_poll(board_info_t *db) { if (db->type == TYPE_DM9000E) schedule_delayed_work(&db->phy_poll, HZ * 2); } */ /* static int dm9000_ioctl(struct rtnet_device *dev, unsigned int request, void *arg) { board_info_t *dm = to_dm9000_board(dev); int res; struct ifreq *req = arg; rtdm_lockctx_t context; rtdm_printk("ioctl..."); if (!rtnetif_running(dev)) return -EINVAL; rtdm_lock_get_irqsave(&dm->lock, context); res = generic_mii_ioctl(&dm->mii, if_mii(req), request, NULL); rtdm_lock_put_irqrestore(&dm->lock, context); rtdm_printk(" ok\n"); return res; } */ static unsigned int dm9000_read_locked(board_info_t *db, int reg) { // unsigned long flags; unsigned int ret; rtdm_lockctx_t context;/*rtnet experimental*/ rtdm_printk("read locked..."); // spin_lock_irqsave(&db->lock, flags); rtdm_lock_get_irqsave(&db->lock, context);/*rtnet experimental*/ ret = ior(db, reg); // spin_unlock_irqrestore(&db->lock, flags); rtdm_lock_put_irqrestore(&db->lock, context); /*rtnet experimental*/ rtdm_printk(" ok"); return ret; } static int dm9000_wait_eeprom(board_info_t *db) { unsigned int status; int timeout = 8; /* wait max 8msec */ rtdm_printk("wait eeprom..."); /* The DM9000 data sheets say we should be able to * poll the ERRE bit in EPCR to wait for the EEPROM * operation. From testing several chips, this bit * does not seem to work. * * We attempt to use the bit, but fall back to the * timeout (which is why we do not return an error * on expiry) to say that the EEPROM operation has * completed. */ while (1) { status = dm9000_read_locked(db, DM9000_EPCR); if ((status & EPCR_ERRE) == 0) break; msleep(1); if (timeout-- < 0) { rtdm_printk("timeout waiting EEPROM\n"); break; } } rtdm_printk(" ok"); return 0; } /* * Read a word data from EEPROM */ static void dm9000_read_eeprom(board_info_t *db, int offset, u8 *to) { // unsigned long flags; rtdm_lockctx_t context;/*rtnet experimental*/ rtdm_printk("read eeprom..."); if (db->flags & DM9000_PLATF_NO_EEPROM) { to[0] = 0xff; to[1] = 0xff; return; } mutex_lock(&db->addr_lock); // spin_lock_irqsave(&db->lock, flags); rtdm_lock_get_irqsave(&db->lock, context);/*rtnet experimental*/ iow(db, DM9000_EPAR, offset); iow(db, DM9000_EPCR, EPCR_ERPRR); // spin_unlock_irqrestore(&db->lock, flags); rtdm_lock_put_irqrestore(&db->lock, context); /*rtnet experimental*/ dm9000_wait_eeprom(db); /* delay for at-least 150uS */ msleep(1); // spin_lock_irqsave(&db->lock, flags); rtdm_lock_get_irqsave(&db->lock, context);/*rtnet experimental*/ iow(db, DM9000_EPCR, 0x0); to[0] = ior(db, DM9000_EPDRL); to[1] = ior(db, DM9000_EPDRH); // spin_unlock_irqrestore(&db->lock, flags); rtdm_lock_put_irqrestore(&db->lock, context); /*rtnet experimental*/ mutex_unlock(&db->addr_lock); rtdm_printk(" ok\n"); } static void dm9000_show_carrier(board_info_t *db, unsigned carrier, unsigned nsr) { struct rtnet_device *ndev = db->ndev; unsigned ncr = dm9000_read_locked(db, DM9000_NCR); rtdm_printk("show carrier..."); if (carrier) rtdm_printk("%s: link up, %dMbps, %s-duplex, no LPA\n", ndev->name, (nsr & NSR_SPEED) ? 10 : 100, (ncr & NCR_FDX) ? "full" : "half"); else rtdm_printk("%s: link down\n", ndev->name); rtdm_printk(" ok"); } static void dm9000_poll_work(struct work_struct *w) { struct delayed_work *dw = container_of(w, struct delayed_work, work); board_info_t *db = container_of(dw, board_info_t, phy_poll); struct rtnet_device *ndev = db->ndev; unsigned nsr = dm9000_read_locked(db, DM9000_NSR); // unsigned old_carrier = rtnetif_carrier_ok(ndev) ? 1 : 0; unsigned new_carrier; rtdm_printk("poll work... flags : %i DM9000_PLATF_SIMPLE_PHY : %i,DM9000_PLATF_EXT_PHY : %i",db->flags,DM9000_PLATF_SIMPLE_PHY, !(DM9000_PLATF_EXT_PHY)); // if (db->flags & DM9000_PLATF_SIMPLE_PHY && // !(db->flags & DM9000_PLATF_EXT_PHY)) { new_carrier = (nsr & NSR_LINKST) ? 1 : 0; rtdm_printk(" nsr & NSR_LINKST : %i , nsr : %i",nsr & NSR_LINKST,nsr); if (netif_msg_link(db)) dm9000_show_carrier(db, new_carrier, nsr); if (!new_carrier) rtnetif_carrier_off(ndev); else rtnetif_carrier_on(ndev); // } else // mii_check_media(&db->mii, netif_msg_link(db), 0); // if (rtnetif_running(ndev)) // dm9000_schedule_poll(db); rtdm_printk(" ok\n"); } /* dm9000_release_board * * release a board, and any mapped resources */ static void dm9000_release_board(struct platform_device *pdev, struct board_info *db) { /* unmap our resources */ iounmap(db->io_addr); iounmap(db->io_data); /* release the resources */ rtskb_pool_release(&db->skb_pool); release_resource(db->data_req); kfree(db->data_req); // rtdev_free(pdev); release_resource(db->addr_req); kfree(db->addr_req); // rtdev_free(pdev); } static unsigned char dm9000_type_to_char(enum dm9000_type type) { switch (type) { case TYPE_DM9000E: return 'e'; case TYPE_DM9000A: return 'a'; case TYPE_DM9000B: return 'b'; } return '?'; } /* * Set DM9000 multicast address */ static void dm9000_hash_table(struct rtnet_device *dev) { board_info_t *db = dev->priv;//netdev_priv(dev); struct dev_mc_list *mcptr = dev->mc_list; int mc_cnt = dev->mc_count; int i, oft; u32 hash_val; u16 hash_table[4]; u8 rcr = RCR_DIS_LONG | RCR_DIS_CRC | RCR_RXEN; // unsigned long flags; rtdm_printk("hash table..."); // spin_lock_irqsave(&db->lock, flags); rtdm_irq_disable(&db->irq_handle); rtdm_lock_get(&db->lock); for (i = 0, oft = DM9000_PAR; i < 6; i++, oft++) iow(db, oft, dev->dev_addr[i]); /* Clear Hash Table */ for (i = 0; i < 4; i++) hash_table[i] = 0x0; /* broadcast address */ hash_table[3] = 0x8000; if (dev->flags & IFF_PROMISC) rcr |= RCR_PRMSC; if (dev->flags & IFF_ALLMULTI) rcr |= RCR_ALL; /* the multicast address in Hash Table : 64 bits */ for (i = 0; i < mc_cnt; i++, mcptr = mcptr->next) { hash_val = ether_crc_le(6, mcptr->dmi_addr) & 0x3f; hash_table[hash_val / 16] |= (u16) 1 << (hash_val % 16); } /* Write the hash table to MAC MD table */ for (i = 0, oft = DM9000_MAR; i < 4; i++) { iow(db, oft++, hash_table[i]); iow(db, oft++, hash_table[i] >> 8); } iow(db, DM9000_RCR, rcr); rtdm_lock_put(&db->lock); rtdm_irq_enable(&db->irq_handle); // spin_unlock_irqrestore(&db->lock, flags); rtdm_printk(" ok"); } /* * Initialize dm9000 board ->rtnet */ static void dm9000_init_dm9000(struct rtnet_device *dev) { board_info_t *db = dev->priv;//netdev_priv(dev); unsigned int imr; rtdm_printk("init..."); /* I/O mode */ db->io_mode = ior(db, DM9000_ISR) >> 6; /* ISR bit7:6 keeps I/O mode */ rtdm_printk("io_mode : %i\n",db->io_mode); /* GPIO0 on pre-activate PHY */ iow(db, DM9000_GPR, 0); /* REG_1F bit0 activate phyxcer */ iow(db, DM9000_GPCR, GPCR_GEP_CNTL); /* Let GPIO0 output */ iow(db, DM9000_GPR, 0); /* Enable PHY */ if (db->flags & DM9000_PLATF_EXT_PHY) iow(db, DM9000_NCR, NCR_EXT_PHY); /* Program operating register */ iow(db, DM9000_TCR, 0); /* TX Polling clear */ iow(db, DM9000_BPTR, 0x3f); /* Less 3Kb, 200us */ iow(db, DM9000_FCR, 0xff); /* Flow Control */ iow(db, DM9000_SMCR, 0); /* Special Mode */ /* clear TX status */ iow(db, DM9000_NSR, NSR_WAKEST | NSR_TX2END | NSR_TX1END); iow(db, DM9000_ISR, ISR_CLR_STATUS); /* Clear interrupt status */ /* Set address filter table */ dm9000_hash_table(dev); imr = IMR_PAR | IMR_PTM | IMR_PRM; if (db->type != TYPE_DM9000E) imr |= IMR_LNKCHNG; db->imr_all = imr; rtdm_printk("imr : %i\n",imr); /* Enable TX/RX interrupt mask */ iow(db, DM9000_IMR, imr); /* Init Driver variable */ db->tx_pkt_cnt = 0; db->queue_pkt_len = 0; // dev->trans_start = 0; rtdm_printk(" ok\n"); } /* * Hardware start transmission. * Send a packet to media from the upper layer. */ static int dm9000_start_xmit(struct rtskb *skb, struct rtnet_device *dev) { board_info_t *db = dev->priv; int j,lenght; unsigned char *buf;//add to receive the address of the payload rtdm_lockctx_t context;/*experimental*/ db->skb = skb; db->skb_length = skb->len; db->stats.tx_bytes += skb->len; rtdm_printk("start xmit..."); if (db->tx_pkt_cnt > 1){ rtdm_printk("tx_pkt_cnt : %i",db->tx_pkt_cnt); return 1; } /*experimental*/ lenght = 20; rtdm_lock_irqsave(context); /* get and patch time stamp just before the transmission */ if (skb->xmit_stamp) *skb->xmit_stamp = cpu_to_be64(rtdm_clock_read() + *skb->xmit_stamp); /*experimental*/ /* Move data to DM9000 TX RAM */ writeb(DM9000_MWCMD, db->io_addr); (db->outblk)(db->io_data, skb->data,skb->len); // dev->stats.tx_bytes += skb->len; /*-----------------------------------------------modify---------------------------------------*/ /*read the data and test the payload*/ buf = skb->data; rtdm_printk("packet size : %i \n", skb->len); for(j=0;j< skb->len;j++) { rtdm_printk("%#.2x|", *(buf+j)); } /*-----------------------------------------end-of-modify---------------------------------------*/ db->tx_pkt_cnt++; /* TX control: First packet immediately send, second packet queue */ if (db->tx_pkt_cnt == 1) { //rtdm_printk(";"); /* Set TX length to DM9000 */ iow(db, DM9000_TXPLL, skb->len); iow(db, DM9000_TXPLH, skb->len >> 8); /* Issue TX polling command */ iow(db, DM9000_TCR, TCR_TXREQ); /* Cleared after TX complete */ // skb->time_stamp = rtdm_clock_read(); // dev->trans_start = jiffies; /* save the time stamp */ } else { /* Second packet */ db->queue_pkt_len = skb->len; rtnetif_stop_queue(dev); } // spin_unlock_irqrestore(&db->lock, flags); rtdm_lock_irqrestore(context); /* free this SKB */ dev_kfree_rtskb(skb); rtdm_printk(" ok\n"); return 0; } /* * DM9000 interrupt handler * receive the packet to upper layer, free the transmitted packet */ static void dm9000_tx_done(struct rtnet_device *dev, board_info_t *db) { int tx_status = ior(db, DM9000_NSR); /* Got TX status */ // int temp; rtdm_printk("tx done..."); if (tx_status & (NSR_TX2END | NSR_TX1END)) { /* One packet sent complete */ db->tx_pkt_cnt--; // dev->stats.tx_packets++; if (netif_msg_tx_done(db)) { rtdm_printk("tx done, NSR %02x\n", tx_status); } /* Queue packet check & send */ if (db->tx_pkt_cnt > 0) { iow(db, DM9000_TXPLL, db->queue_pkt_len); iow(db, DM9000_TXPLH, db->queue_pkt_len >> 8); iow(db, DM9000_TCR, TCR_TXREQ); // dev->trans_start = jiffies; } rtnetif_wake_queue(dev); } rtdm_printk(" ok"); } struct dm9000_rxhdr { u8 RxPktReady; u8 RxStatus; __le16 RxLen; } __attribute__((__packed__)); /* * Received a packet and pass to upper layer */ static void dm9000_rx(struct rtnet_device *dev,nanosecs_abs_t *time_stamp) { board_info_t *db = dev->priv; struct dm9000_rxhdr rxhdr; struct rtskb *skb; u8 rxbyte, *rdptr; bool GoodPacket; int RxLen; // unsigned char *buf;/*modify*/ // int temp; rtdm_printk("rx..."); /* Check packet ready or not */ do { ior(db, DM9000_MRCMDX); /* Dummy read */ /* Get most updated data */ rxbyte = readb(db->io_data); /* Status check: this byte must be 0 or 1 */ if (rxbyte > DM9000_PKT_RDY) { //dev_warn(db->dev, "status check fail: %d\n", rxbyte); iow(db, DM9000_RCR, 0x00); /* Stop Device */ iow(db, DM9000_ISR, IMR_PAR); /* Stop INT request */ return; } if (rxbyte != DM9000_PKT_RDY) return; /* A packet ready now & Get status/length */ GoodPacket = true; writeb(DM9000_MRCMD, db->io_addr); (db->inblk)(db->io_data, &rxhdr, sizeof(rxhdr)); RxLen = le16_to_cpu(rxhdr.RxLen); /* if (netif_msg_rx_status(db)) dev_dbg(db->dev, "RX: status %02x, length %04x\n", rxhdr.RxStatus, RxLen);*/ /* Packet Status check */ if (RxLen < 0x40) { GoodPacket = false;/* if (netif_msg_rx_err(db)) dev_dbg(db->dev, "RX: Bad Packet (runt)\n");*/ } /* if (RxLen > DM9000_PKT_MAX) { dev_dbg(db->dev, "RST: RX Len:%x\n", RxLen); }*/ /* rxhdr.RxStatus is identical to RSR register. */ if (rxhdr.RxStatus & (RSR_FOE | RSR_CE | RSR_AE | RSR_PLE | RSR_RWTO | RSR_LCS | RSR_RF)) { GoodPacket = false; /* if (rxhdr.RxStatus & RSR_FOE) { if (netif_msg_rx_err(db)) dev_dbg(db->dev, "fifo error\n"); // dev->stats.rx_fifo_errors++; } if (rxhdr.RxStatus & RSR_CE) { if (netif_msg_rx_err(db)) dev_dbg(db->dev, "crc error\n"); // dev->stats.rx_crc_errors++; } if (rxhdr.RxStatus & RSR_RF) { if (netif_msg_rx_err(db)) dev_dbg(db->dev, "length error\n"); // dev->stats.rx_length_errors++; }*/ } /* Move data from DM9000 */ if (GoodPacket && ((skb = dev_alloc_rtskb(RxLen + 4, &db->skb_pool)) != NULL)) { rtskb_reserve(skb, 2); rdptr = (u8 *) rtskb_put(skb, RxLen - 4); /* Read received packet from RX SRAM */ (db->inblk)(db->io_data, rdptr, RxLen); // dev->stats.rx_bytes += RxLen; /* Pass to upper layer */ skb->protocol = rt_eth_type_trans(skb, dev); skb->time_stamp = *time_stamp; rtnetif_rx(skb); // dev->stats.rx_packets++; } else { /* need to dump the packet's data */ (db->dumpblk)(db->io_data, RxLen); } } while (rxbyte == DM9000_PKT_RDY); rtdm_printk(" ok\n"); } static int dm9000_interrupt(rtdm_irq_t *irq_handle)//int irq, void *dev_id) { nanosecs_abs_t time_stamp = rtdm_clock_read(); struct rtnet_device *dev = rtdm_irq_get_arg(irq_handle, struct rtnet_device); board_info_t *db = dev->priv; int int_status; unsigned int old_packet_cnt = db->stats.rx_packets; u8 reg_save; rtdm_printk("interrupt..."); /* A real interrupt coming */ /* holders of db->lock must always block IRQs */ rtdm_lock_get(&db->lock); /* Save previous register address */ reg_save = readb(db->io_addr); /* Disable all interrupts */ iow(db, DM9000_IMR, IMR_PAR); /* Got DM9000 interrupt status */ int_status = ior(db, DM9000_ISR); /* Got ISR */ iow(db, DM9000_ISR, int_status); /* Clear ISR status */ // if (netif_msg_intr(db)) // dev_dbg(db->dev, "interrupt status %02x\n", int_status); /* Received the coming packet */ if (int_status & ISR_PRS){ dm9000_rx(dev,&time_stamp); } /* Transmit Interrupt check */ if (int_status & ISR_PTS){ dm9000_tx_done(dev, db); } if (db->type != TYPE_DM9000E) { if (int_status & ISR_LNKCHNG) { /* fire a link-change request */ schedule_delayed_work(&db->phy_poll, 1); } } /* Re-enable interrupt mask */ iow(db, DM9000_IMR, db->imr_all); /* Restore previous register address */ writeb(reg_save, db->io_addr); rtdm_lock_put(&db->lock); if (old_packet_cnt != db->stats.rx_packets) rt_mark_stack_mgr(dev); // rtdm_irq_enable(&db->irq_handle); rtdm_printk(" ok\n"); return RTDM_IRQ_HANDLED; } #ifdef CONFIG_NET_POLL_CONTROLLER /* *Used by netconsole */ static void dm9000_poll_controller(struct rtnet_device *dev) { disable_irq(dev->irq); dm9000_interrupt(dev->irq, dev); enable_irq(dev->irq); } #endif /* * Open the interface. * The interface is opened whenever "ifconfig" actives it. */ static int dm9000_open(struct rtnet_device *dev) { board_info_t *db = dev->priv; unsigned long irqflags = db->irq_res->flags & IRQF_TRIGGER_MASK; int retval; rtdm_printk("ifup..."); if (netif_msg_ifup(db)) rtdm_printk("enabling %s\n", dev->name); /* If there is no IRQ type specified, default to something that * may work, and tell the user that this is a problem */ if (irqflags == IRQF_TRIGGER_NONE) rtdm_printk("WARNING: no IRQ resource flags set.\n"); irqflags |= IRQF_SHARED; /* Initialize DM9000 board */ dm9000_reset(db); dm9000_init_dm9000(dev); rt_stack_connect(dev, &STACK_manager); retval = rtdm_irq_request(&db->irq_handle,dev->irq, dm9000_interrupt,0, dev->name, dev); rtdm_printk("-> return : %i , irq : %i",retval,dev->irq); if (retval) return -EAGAIN; /* Init driver variable */ db->dbug_cnt = 0; // mii_check_media(&db->mii, netif_msg_link(db), 1); rtnetif_start_queue(dev); // dm9000_schedule_poll(db); rtdm_printk(" ok\n"); return 0; } /* * Sleep, either by using msleep() or if we are suspending, then * use mdelay() to sleep. */ static void dm9000_msleep(board_info_t *db, unsigned int ms) { if (db->in_suspend) mdelay(ms); else msleep(ms); } /* * Write a word to phyxcer */ static void dm9000_phy_write(struct rtnet_device *dev, int phyaddr_unused, int reg, int value) { board_info_t *db = dev->priv; // unsigned long flags; unsigned long reg_save; rtdm_lockctx_t context;/*rtnet experimental*/ rtdm_printk("phy write..."); mutex_lock(&db->addr_lock); // spin_lock_irqsave(&db->lock,flags); rtdm_lock_get_irqsave(&db->lock, context);/*rtnet experimental*/ /* Save previous register address */ reg_save = readb(db->io_addr); /* Fill the phyxcer register into REG_0C */ iow(db, DM9000_EPAR, DM9000_PHY | reg); /* Fill the written data into REG_0D & REG_0E */ iow(db, DM9000_EPDRL, value); iow(db, DM9000_EPDRH, value >> 8); iow(db, DM9000_EPCR, EPCR_EPOS | EPCR_ERPRW); /* Issue phyxcer write command */ writeb(reg_save, db->io_addr); // spin_unlock_irqrestore(&db->lock, flags); rtdm_lock_put_irqrestore(&db->lock, context); /*rtnet experimental*/ dm9000_msleep(db, 1); /* Wait write complete */ // spin_lock_irqsave(&db->lock,flags); rtdm_lock_get_irqsave(&db->lock, context);/*rtnet experimental*/ reg_save = readb(db->io_addr); iow(db, DM9000_EPCR, 0x0); /* Clear phyxcer write command */ /* restore the previous address */ writeb(reg_save, db->io_addr); // spin_unlock_irqrestore(&db->lock, flags); rtdm_lock_put_irqrestore(&db->lock, context); /*rtnet experimental*/ rtdm_printk(" ok\n"); mutex_unlock(&db->addr_lock); } static void dm9000_shutdown(struct rtnet_device *dev) { board_info_t *db = dev->priv; /* RESET device */ dm9000_phy_write(dev, 0, MII_BMCR, BMCR_RESET); /* PHY RESET */ iow(db, DM9000_GPR, 0x01); /* Power-Down PHY */ iow(db, DM9000_IMR, IMR_PAR); /* Disable all interrupt */ iow(db, DM9000_RCR, 0x00); /* Disable RX */ } /* * Stop the interface. * The interface is stopped when it is brought. */ static int dm9000_stop(struct rtnet_device *ndev) { board_info_t *db = ndev->priv;// netdev_priv(ndev); static int i; if (netif_msg_ifdown(db)) rtdm_printk("shutting down %s\n", ndev->name); cancel_delayed_work_sync(&db->phy_poll); rtnetif_stop_queue(ndev); rtnetif_carrier_off(ndev); /* free interrupt */ // free_irq(ndev->irq, ndev); //rtdm_irq_free(&db->irq_handle);//rtnet if ( (i=rtdm_irq_free(&db->irq_handle))<0 ) return i; rt_stack_disconnect(ndev); dm9000_shutdown(ndev); return 0; } #define res_size(_r) (((_r)->end - (_r)->start) + 1) /* * Search DM9000 board, allocate space and register it */ static int __devinit dm9000_probe(struct platform_device *pdev) { struct dm9000_plat_data *pdata = pdev->dev.platform_data; struct board_info *db; /* Point a board information structure */ struct rtnet_device *ndev; const unsigned char *mac_src; int ret = 0; int iosize; int i; u32 id_val; static int cards_found = -1; rtdm_printk("probe...\n"); cards_found++; if (cards[cards_found] == 0) return -ENODEV; /* Init network device */ ndev = rt_alloc_etherdev(sizeof(struct board_info));/*rtnet*/ rtdm_printk("rtnet_device : %p \n",ndev); if (!ndev) { return -ENOMEM; } rtdev_alloc_name(ndev, "rteth%d"); rt_rtdev_connect(ndev, &RTDEV_manager); RTNET_SET_MODULE_OWNER(ndev); ndev->vers = RTDEV_VERS_2_0; // SET_NETDEV_DEV(ndev, &pdev->rtdev); //ndev = &pdev->rtdev;/*rtnet experimental*/ // dev_dbg(&pdev->dev, "dm9000_probe()\n"); /* setup board info structure */ db = ndev->priv;//netdev_priv(ndev); memset(db, 0, sizeof(*db)); rtdm_printk("board_info : %p \n",db); db->dev = &pdev->dev; db->ndev = ndev; // spin_lock_init(&db->lock); rtdm_lock_init(&db->lock); mutex_init(&db->addr_lock); INIT_DELAYED_WORK(&db->phy_poll, dm9000_poll_work); db->addr_res = platform_get_resource(pdev, IORESOURCE_MEM, 0); rtdm_printk("addr_res : %p\n",db->addr_res); db->data_res = platform_get_resource(pdev, IORESOURCE_MEM, 1); rtdm_printk("data_res : %p\n",db->data_res); db->irq_res = platform_get_resource(pdev, IORESOURCE_IRQ, 0); rtdm_printk("irq_res : %p\n",db->irq_res); if (db->addr_res == NULL || db->data_res == NULL || db->irq_res == NULL) { rtdm_printk("insufficient resources\n"); ret = -ENOENT; goto out; } iosize = res_size(db->addr_res); db->addr_req = request_mem_region(db->addr_res->start, iosize, pdev->name); if (db->addr_req == NULL) { rtdm_printk("cannot claim address reg area\n"); ret = -EIO; goto out; } db->io_addr = ioremap(db->addr_res->start, iosize); if (db->io_addr == NULL) { rtdm_printk("failed to ioremap address reg\n"); ret = -EINVAL; goto out; } iosize = res_size(db->data_res); db->data_req = request_mem_region(db->data_res->start, iosize, pdev->name); if (db->data_req == NULL) { rtdm_printk("cannot claim data reg area\n"); ret = -EIO; goto out; } db->io_data = ioremap(db->data_res->start, iosize); if (db->io_data == NULL) { rtdm_printk("failed to ioremap data reg\n"); ret = -EINVAL; goto out; } rtdm_printk("io size : %i,data_req %p ,io_data %p \n",iosize,db->data_req,db->io_data); /* Get I/O base address and IRQ */ ndev->base_addr = (unsigned long)db->io_addr; ndev->irq = platform_get_irq(pdev, 0);//db->irq_res->start; rtdm_printk("base_addr : %p, irq : %p \n",ndev->base_addr,ndev->irq); /* ensure at least we have a default set of IO routines */ dm9000_set_io(db, iosize); /* check to see if anything is being over-ridden */ if (pdata != NULL) { /* check to see if the driver wants to over-ride the * default IO width */ if (pdata->flags & DM9000_PLATF_8BITONLY) dm9000_set_io(db, 1); if (pdata->flags & DM9000_PLATF_16BITONLY) dm9000_set_io(db, 2); if (pdata->flags & DM9000_PLATF_32BITONLY) dm9000_set_io(db, 4); /* check to see if there are any IO routine * over-rides */ if (pdata->inblk != NULL) db->inblk = pdata->inblk; if (pdata->outblk != NULL) db->outblk = pdata->outblk; if (pdata->dumpblk != NULL) db->dumpblk = pdata->dumpblk; db->flags = pdata->flags; } #ifdef CONFIG_DM9000_FORCE_SIMPLE_PHY_POLL db->flags |= DM9000_PLATF_SIMPLE_PHY; #endif dm9000_reset(db); /* try multiple times, DM9000 sometimes gets the read wrong */ for (i = 0; i < 8; i++) { id_val = ior(db, DM9000_VIDL); id_val |= (u32)ior(db, DM9000_VIDH) << 8; id_val |= (u32)ior(db, DM9000_PIDL) << 16; id_val |= (u32)ior(db, DM9000_PIDH) << 24; if (id_val == DM9000_ID) break; rtdm_printk("read wrong id 0x%08x\n", id_val); } if (id_val != DM9000_ID) { rtdm_printk("wrong id: 0x%08x\n", id_val); ret = -ENODEV; goto out; } /* Identify what type of DM9000 we are working on */ id_val = ior(db, DM9000_CHIPR); dev_dbg(db->dev, "dm9000 revision 0x%02x\n", id_val); switch (id_val) { case CHIPR_DM9000A: db->type = TYPE_DM9000A; break; case CHIPR_DM9000B: db->type = TYPE_DM9000B; break; default: rtdm_printk("ID %02x => defaulting to DM9000E\n", id_val); db->type = TYPE_DM9000E; } /* from this point we assume that we have found a DM9000 */ /* driver system function */ /*ether_setup(ndev);*/ ndev->open = &dm9000_open; ndev->hard_start_xmit = &dm9000_start_xmit; // ndev->tx_timeout = &dm9000_timeout; // ndev->watchdog_timeo = msecs_to_jiffies(watchdog); ndev->stop = &dm9000_stop; // ndev->set_multicast_list = &dm9000_hash_table; // ndev->ethtool_ops = &dm9000_ethtool_ops; // ndev->do_ioctl = &dm9000_ioctl; #ifdef CONFIG_NET_POLL_CONTROLLER ndev->poll_controller = &dm9000_poll_controller; #endif // db->msg_enable = NETIF_MSG_LINK; db->mii.phy_id_mask = 0x1f; db->mii.reg_num_mask = 0x1f; db->mii.force_media = 0; db->mii.full_duplex = 0; // db->mii.dev = ndev; // db->mii.mdio_read = dm9000_phy_read; // db->mii.mdio_write = dm9000_phy_write; mac_src = "eeprom"; if (rtskb_pool_init(&db->skb_pool, RX_RING_SIZE*2) < RX_RING_SIZE*2) { rtskb_pool_release(&db->skb_pool); rtdev_free(ndev->priv); ndev->priv = NULL; return -ENOMEM; } /* try reading the node address from the attached EEPROM */ for (i = 0; i < 6; i += 2) dm9000_read_eeprom(db, i / 2, ndev->dev_addr+i); if (!is_valid_ether_addr(ndev->dev_addr) && pdata != NULL) { mac_src = "platform data"; memcpy(ndev->dev_addr, pdata->dev_addr, 6); } if (!is_valid_ether_addr(ndev->dev_addr)) { /* try reading from mac */ mac_src = "chip"; for (i = 0; i < 6; i++) ndev->dev_addr[i] = ior(db, i+DM9000_PAR); } if (!is_valid_ether_addr(ndev->dev_addr)) rtdm_printk("%s: Invalid ethernet MAC address. Please " "set using ifconfig\n", ndev->name); platform_set_drvdata(pdev, ndev); ret = rt_register_rtnetdev(ndev); if (ret == 0) rtdm_printk("%s: dm9000%c at %p,%p IRQ %d MAC: %pM (%s)", ndev->name, dm9000_type_to_char(db->type), db->io_addr, db->io_data, ndev->irq, ndev->dev_addr, mac_src); rtdm_printk(" ok! (probe)\n"); return 0; out: rtdm_printk("not found (%d).\n", ret); dm9000_release_board(pdev, db); rtdev_free(ndev); return ret; } static int __devexit dm9000_drv_remove(struct platform_device *pdev) { struct rtnet_device *ndev = platform_get_drvdata(pdev); platform_set_drvdata(pdev, NULL); rt_unregister_rtnetdev(ndev); dm9000_release_board(pdev, (board_info_t *) ndev->priv); rtdev_free(ndev->priv); /* free device structure */ ndev->priv = NULL; rt_rtdev_disconnect(ndev); dev_dbg(&pdev->dev, "released and freed device\n"); return 0; } static struct platform_driver dm9000_driver = { .driver = { .name = "dm9000", .owner = THIS_MODULE, }, .probe = dm9000_probe, .remove = __devexit_p(dm9000_drv_remove), // .suspend = NULL, // .resume = NULL, }; static int __init dm9000_init(void) { printk(KERN_INFO "%s Real Time Ethernet Driver, V%s\n", CARDNAME, DRV_VERSION); return platform_driver_register(&dm9000_driver); } static void __exit dm9000_cleanup(void) { platform_driver_unregister(&dm9000_driver); } module_init(dm9000_init); module_exit(dm9000_cleanup); MODULE_AUTHOR("WALLOIS Cyril, Horus project"); MODULE_DESCRIPTION("Davicom DM9000 real-time network driver"); MODULE_LICENSE("GPL"); MODULE_ALIAS("platform:dm9000");
Oops
Description: Binary data
------------------------------------------------------------------------------ Download Intel® Parallel Studio Eval Try the new software tools for yourself. Speed compiling, find bugs proactively, and fine-tune applications for parallel performance. See why Intel Parallel Studio got high marks during beta. http://p.sf.net/sfu/intel-sw-dev
_______________________________________________ RTnet-users mailing list RTnet-users@lists.sourceforge.net https://lists.sourceforge.net/lists/listinfo/rtnet-users