To whom it may concern,

there is plural:  http://www.singular.uni-kl.de/Manual/latest/sing_349.htm

which is shipped with SAGE (though, the interface hasn't been worked on)

sage: singular.lib('ncalg.lib')
sage: a = singular.makeUsl2()
sage: W = singular.ring(0,'(x,d)','dp')
sage: singular.Weyl()
`sage2`
sage: S = a + W
sage: singular.set_ring(S)
sage: S

//   characteristic : 0
//   number of vars : 5
//        block   1 : ordering dp
//                  : names    e f h
//        block   2 : ordering dp
//                  : names    x d
//        block   3 : ordering C
//   noncommutative relations:
//    fe=e*f-h
//    he=e*h+2*e
//    hf=f*h-2*f
//    dx=x*d+1

or in terms of SINGULAR/PLURAL directly:

LIB "ncalg.lib";
def a = makeUsl2();       // U(sl_2) in e,f,h presentation
ring W = 0,(x,d),dp;
Weyl();              // 1st Weyl algebra in x,d
def S = a+W;
setring S;
S;
==> //   characteristic : 0
==> //   number of vars : 5
==> //        block   1 : ordering dp
==> //                  : names    e f h 
==> //        block   2 : ordering dp
==> //                  : names    x d 
==> //        block   3 : ordering C
==> //   noncommutative relations:
==> //    fe=ef-h
==> //    he=eh+2e
==> //    hf=fh-2f
==> //    dx=xd+1

Martin

PS: I don't know much about non-commutative algebra, so I wouldn't know if 
your favorite ring is supported by PLURAL.


-- 
name: Martin Albrecht
_pgp: http://pgp.mit.edu:11371/pks/lookup?op=get&search=0x8EF0DC99
_www: http://www.informatik.uni-bremen.de/~malb
_jab: [EMAIL PROTECTED]


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to