It build fine but the I/O is seriously bugged for me, at least for the
displaying of rational functions (but probably wrapping too)...
I paste this:

----------------------------------------------------------------------------------------------------------------------------------------------

k = var('k')
tmp = [rising_factorial(x,k)/falling_factorial(x,k) for k in range(5)]

pol1 = axiom(tmp[1])
pol1
pol1
pol1
pol4 = axiom(tmp[4])
pol4
pol4
pol4
pol4
pol4
pol4
pol4
pol4
pol1 = axiom(tmp[1])
pol1
pol1
pol1
pol1
pol1
pol1
pol1
pol1

----------------------------------------------------------------------------------------------------------------------------------------------

and get

----------------------------------------------------------------------------------------------------------------------------------------------

----------------------------------------------------------------------
| SAGE Version 2.8, Release Date: 2007-08-12                         |
| Type notebook() for the GUI, and license() for information.        |
----------------------------------------------------------------------
Loading SAGE library. Current Mercurial branch is: paul
sage: k = var('k')
sage: tmp = [rising_factorial(x,k)/falling_factorial(x,k) for k in
range(5)]
sage:
sage: pol1 = axiom(tmp[1])
sage: pol1
  1
sage: pol1
  1
sage: pol1
  1
sage: pol4 = axiom(tmp[4])
sage: pol4

sage: pol4

sage: pol4

 - (0)) * ((x) - (1))) * ((x) - (2))) * ((x) - (3)))

   3     2
  x  + 6x  + 11x + 6
  ------------------
   3     2
  x  - 6x  + 11x - 6
sage: pol4

   3     2
  x  + 6x  + 11x + 6
  ------------------
   3     2
  x  - 6x  + 11x - 6
sage: pol4

   3     2
  x  + 6x  + 11x + 6
  ------------------
   3     2
  x  - 6x  + 11x - 6
sage: pol4

   3     2
  x  + 6x  + 11x + 6
  ------------------
   3     2
  x  - 6x  + 11x - 6
sage: pol4

   3     2
  x  + 6x  + 11x + 6
  ------------------
   3     2
  x  - 6x  + 11x - 6
sage: pol4

   3     2
  x  + 6x  + 11x + 6
  ------------------
   3     2
  x  - 6x  + 11x - 6
sage: pol1 = axiom(tmp[1])
sage: pol1

   3     2
  x  + 6x  + 11x + 6
  ------------------
   3     2
  x  - 6x  + 11x - 6
sage: pol1

   3     2
  x  + 6x  + 11x + 6
  ------------------
   3     2
  x  - 6x  + 11x - 6
sage: pol1

   3     2
  x  + 6x  + 11x + 6
  ------------------
   3     2
  x  - 6x  + 11x - 6
sage: pol1





  1
sage: pol1
  1
sage: pol1
  1
sage: pol1





  1
sage: pol1
  1
sage:


----------------------------------------------------------------------------------------------------------------------------------------------

Notice how when I ask for "sage: pol4" I first get blanks a few times,
then bits of the (presumably) internal representation, then what
should be displayed. And that pol4 keeps on coming when I ask for
"sage: pol1".

That seems like a first serious bug. It also hangs when I try to do
comvert SAGE rational functions to axiom rational functions without
displaying them.

I am running SAGE 2.8 on a MacBook under MacOSX

Paul

On Aug 14, 9:53 pm, "Bill Page" <[EMAIL PROTECTED]> wrote:
> On 8/14/07, [EMAIL PROTECTED] wrote:
>
> > Worked for me too, MacOSX MacBook.
> > (and I tried installing the publicly-available optional Axiom package
> > yesterday and that didn't work)
> > Paul
>
> The previous optional package 'axiom4sage-0.1.1' is compatible only
> with versions of Sage prior to 2.8.1 and builds on a more restricted
> range of machines using GCL rather than Clisp.
>
> The new 'axiom4sage-0.3.1' includes several important bug fixes as
> well as the new GUESS package:
>
> http://arxiv.org/abs/math/0702086
>
> Extended Rate, more GFUN
> Authors: Martin Rubey
>
>     Abstract: We present a software package that guesses formulae for
> sequences of, for example, rational numbers or rational functions,
> given the first few terms. Thereby we extend and complement Christian
> Krattenthaler's program Rate and the relevant parts of Bruno Salvy and
> Paul Zimmermann's GFUN.
>
> See also:
>
> http://wiki.axiom-developer.org/GuessingFormulasForSequences
>
> For example:
>
> sage: r=[0,3,32,375,5184,84035]
> sage: R=axiom(r).guessExpRat(); R
>
>                        n
>   [[function= n (n + 2) ,order= 0]]
>
> sage: f=axiom('%s.1.function'%N.name()); f
>
>            n
>   n (n + 2)
>
> sage: f.type()
> Expression Integer
>
> sage: f.eval(axiom('n=5'))
>   84035
>
> sage: f.eval(axiom('n=6'))
>   1572864
>
> sage:
>
> Regards,
> Bill Page.


--~--~---------~--~----~------------~-------~--~----~
To post to this group, send email to sage-devel@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at http://groups.google.com/group/sage-devel
URLs: http://sage.scipy.org/sage/ and http://modular.math.washington.edu/sage/
-~----------~----~----~----~------~----~------~--~---

Reply via email to